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Abstract: An interpretation of the local scale hydrostratigraphy for an area of 107 km
2
 in 

Titas Upazila in Bangladesh is presented. The vertical distribution of environmental tracers 

(chloride “Cl” and bromide “Br”) and carbon isotopes (
13

C and 
14

C) was also investigated. 

Moreover, a groundwater flow model was developed for part of the area to show the local 

scale flow field. The region of interest (ROI) is affected by arsenic (As) contamination in 

groundwater (concentration > 50 µg/L). A hydrostratigraphic model demonstrates the 

presence of three continuous sand aquifers separated or partly separated by clay and silty clay 

aquitards. The upper aquifer has almost a continuous thickness throughout the model area and 

extends to 70-100 meters below ground level (mbgl). The second aquifer extends from ~90 

mbgl to 140 mbgl, and it is connected in some parts with the coarse-sand aquifer located 

underneath, where the confining layer vanishes. The upper two aquifers show a slightly 

sloping trend toward the west. The confining silty clay or clay layers do not have the same 

thickness all over their extensions in the area. Discontinuous clay layers locally divide the 

near-surface aquifer into several laterally connected corridors. Compartmentalizing the 

shallow unconfined aquifer into smaller groundwater bodies by silt-clay layers might support 

the idea of direct recharge from precipitation rather than through leaking from ponds and/or 

rivers. The results of the chemical tracers show a concomitant release of Cl, Br, and dissolved 

organic carbon (DOC) with an increasing trend with depth. A significant positive correlation 

(r = 0.8, p ≤ 0.01) between Br and DOC points to peat deposits (microbial mediated 

dehalogenation of natural organo-bromine compounds) as a potential source of their release. 

The conceptual flow model of part of the ROI was developed based on the observed 

topography and inferred hydrostratigraphy. The results of the flow model suggest the 
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existence of local scale flow net and the directions of groundwater flow from the manmade 

features toward the low-lying areas.  

Keywords: Hydrostratigraphy, Arsenic, Groundwater flow modeling, Titas 

1. INTRODUCTION 

Groundwater contamination with As is an international problem (Eiche et al. 2008; Winkel et 

al. 2008; Bundschuh et al. 2010; Al Lawati et al. 2012), which has become apparent for more 

than three decades. Many countries around the world are suffering from this problem, 

especially in Asia and South America (Chowdhury et al. 2000; Rowland et al. 2006; Singh 

and Gupta 2008; Chakraborti et al. 2009; Roychowdhury 2010). The extent of this problem in 

Bangladesh is considered, according to the World Health Organization (WHO), the biggest 

distress affecting the human race ever (Smith et al. 2000; Ravenscroft et al. 2005; Biswas et 

al. 2014); it was the result of switching from surface water contaminated with bacteria as the 

main source of potable water to groundwater naturally contaminated with As (Dowling et al. 

2002; Swartz et al. 2004; Harvey et al. 2006; Hossain 2006; Hoque et al. 2009). Bangladesh is 

one of the most afflicted regions as around 35 % of the population of Bangladesh is exposed 

to high levels of As through drinking and cooking with As-contaminated groundwater, and 

one-fifth of the death toll is a result of this exposure (Argos et al. 2010).  

Since As discovery in groundwater in Bangladesh, a huge number of research projects has 

been done and more efforts have been devoted to clarify and describe the reasons behind it, to 

determine the factors that might play a role in exaggerating or hindering its extent (van Geen 

et al. 2003; Cheng et al. 2005; Aziz et al. 2008; Hoque et al. 2009; Shamsudduha et al. 2009; 

Planer-Friedrich et al. 2012; Hossain and Piantanakulchai 2013; Mailloux et al. 2013; Uddin 

and Kurosawa 2014). In general, there is consensus that the highly As-contaminated 

groundwater is linked to the shallow aquifer of Holocene age with gray sand, and a deep 

reddish-brown sand aquifer is very rarely contaminated (Horneman et al. 2004; Ravenscroft et 

al. 2005; Zheng et al. 2005). However, some studies presented evidence of high As 

concentration in the groundwater from the deeper aquifer from the Pleistocene age (Planer-

Friedrich et al. 2012), or showed that this aquifer might turn, in some parts, into a source of 

As-contaminated groundwater in the coming future as a result of some activities (Michael and 

Voss 2008; Burgess et al. 2010; Radloff et al. 2011).  
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It is highly agreed that reductive dissolution of As-loaded Fe-oxides driven by organic carbon 

(OC) is the main source of As in groundwater. However, the most important and controversial 

issue is the source and pathway of OC as the main trigger of As release (Neumann et al. 2010; 

Planer-Friedrich et al. 2012; Whaley-Martin et al. 2016), especially nowadays as OC of both 

labile and recalcitrant forms has been proven to enhance As release by several mechanisms 

(e.g., electron donor, complexation, competitive sorption, and electron shuttling) (Mladenov 

et al. 2010; Mladenov et al. 2015; Kulkarni et al. 2016). In the shallow aquifers, many studies 

reported a vexing spatial variability of As concentration in groundwater in Bangladesh (van 

Geen et al. 2003; Shamsudduha 2007), and temporal variability was reported in other studies 

in Bangladesh (Planer-Friedrich et al. 2012) and West Bengal (Majumdar et al. 2002; 

Savarimuthu et al. 2006; Tathagata and Rolee 2011). This bewildering availability and 

distribution was attributed to different factors (groundwater chemistry, topography, lithology, 

recharge, and flow regime). However, recent studies emphasized the role of geological 

structure and specially the irregularly distributed fine-grained channel-fill sediments (silt-clay 

layers) in the subsurface (Eiche et al. 2008; Desbarats et al. 2014) and the underground 

palaeosol (McArthur et al. 2008; McArthur et al. 2011; Hoque et al. 2012, 2014; Ghosal et al. 

2015). Moreover, the topography also plays an essential role in this regard (Hossain and 

Piantanakulchai 2013; Khan et al. 2016), in which it might influence the groundwater flow 

and redistribution of contaminants in the underground. So the question is how to link 

underground geology with the surface topography to As release and distribution in the 

subsurface.  

In this study, the shallow hydrostratigraphic framework in an As-affected region of the central 

eastern part in Bangladesh was investigated by a mean of three-dimensional (3D) lithological 

model to get deep insight into the area. Moreover, environmental tracers and carbon isotopes 

were used to track the possible source of OC. Flow modeling wss also conducted to study the 

subsurface flow net. 

2. REGION OF INTEREST (ROI) AND BACKGROUND 

2.1. Region of interest 

The ROI is shown in Figure 1. It comprises ~107 km
2
 of the As-affected area in Comilla 

district of Chittagong division, Bangladesh. About 170,000 people reside in this area, and the 

core crop is paddy. The ROI is located on the Meghna flood plain, and bordered by Homna to 

the north, Daudkandi to the south, Muradnagar to the east, and Meghna to the west. Naturally, 
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it is bounded by the main channel of the River Meghna in the west, the River Gumti in the 

south and east, and the River Titas in the north. These rivers are considered the most 

important geomorphic features in the ROI. 

 

Figure 1 (a) Map of Bangladesh with the main rivers and the neighboring countries, showing 

the location of the ROI (red dashed rectangle) within Bangladesh, (b) the extent of the 

lithology model and the important rivers plus lithology wells (black dots), 
14

C and 
13

C 

sampling wells (G2: empty circles), water table monitoring wells (black crosses), and 

chemical components sampling wells (G1: yellow dots) within the ROI, and (c) 3D strip-logs 

showing the lithology in each borehole 

In general, the topography of the ROI is more or less flat (maximum elevation of about 25 

meters above sea level (masl) in the northern part and sloping toward the outlet of the Meghna 

basin), with a gradient of ~0.4 m/km from north to south. The most salient topographic 

features of the ROI are the artificially raised areas for settlements and villages (e.g., 
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embankments and mounds that houses are built on above the flooding level) (Kanoua and 

Merkel 2017), which are typical features elsewhere in Bangladesh (Harvey et al. 2006; Maitra 

et al. 2014). In order to obtain detailed elevations, a digital elevation model (DEM) was 

acquired from the Consultative Group for International Agriculture Research Consortium for 

Spatial Information SRTM C-band CGIAR-CSI v4.1 with a spatial resolution of 3 arc-sec and 

processed regarding the missing topographic features in the ROI (Kanoua and Merkel 2015).  

2.2. Background 

2.2.1. Geological settings 

A map of Titas Upazila with the well’s location is shown in Figure 1. The ROI has sediments 

of both the Holocene and Pleistocene ages (Planer-Friedrich et al. 2012). Due to frequent 

riverbed migrations, the aquifers are not fully separated and in some locations seem to be 

connected by sand lenses (as inferred later from cross sections). 

The Meghna floodplain, where the ROI is located, is characterized by highly As-contaminated 

aquifers, which are situated in the late Pleistocene-Holocene peat layers, silty sand, and 

clayey silt deposits (Acharyya et al. 2000). During the peak of the last ice age (around 18000 

years ago) the major rivers cut deep valleys into the sediments (Anawar et al. 2011), and 

during the mid-Holocene Climatic Optimum, extensive peat deposits accumulated (Umitsu 

1993). Nowadays, almost all the highly As-contaminated groundwater occurs in the sediments 

deposited at that time, while the sediments covering the low sea level are bearing As-free 

groundwater (Acharyya et al. 2000; Saunders et al. 2008). 

2.2.2. Groundwater flow 

Due to the low topographic gradients in the ROI the hydraulic gradient is expected to be very 

small, commonly 0.0001. The lateral groundwater flow in the shallow aquifer is very slow, 

and the Darcy velocity is about 2 m/a as an overall value in the Bengal basin (Burgess et al. 

2002). It is postulated that the flow system on the local scale exists between local topographic 

features (elevated residence areas, levees, flooded depressions, minor rivers) to a depth of 

about 10-30 m. Moreover, groundwater pumped for domestic, industrial, and irrigation uses 

might disturb the natural flow systems considerably, especially affecting the vertical 

components of flow. 
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3. DATA AND METHODOLOGY 

Lithologic data for this study were collected from 25 lithologs of drinking and irrigation 

wells, plus seven observation wells as shown in Figure 1. The depths of the lithologs range 

from 10 to 240 mbgl (mean 177 and median 220 mbgl). They are distributed throughout the 

ROI (horizontal spacing varies between a few meters to ~18 km). The lithology of the logs 

was provided in tabulated form and consists of three major types of unconsolidated sediments: 

clay, silty clay, and sand. A number of lithologs recorded further subdivisions of the sands in 

terms of grain size (fine, medium, and coarse sand). More detailed information on the color 

and grain size of the sediments was just mentioned in the monitoring wells. No soil horizon 

was mentioned to cover the ROI; however, at the site of the monitoring wells (Titas hospital 

complex and its access road), there is a base foundation consisting of alternating layers of 

sandy material and plastic sheeting (Planer-Friedrich et al. 2012). From a general 

hydrogeological point of view, the sediments have been categorized as aquifers (sand) and 

aquitards (clay). The position of the silty clay is also considered to act as an aquitard. The 

extent, thickness, and hydraulic conductivity of these clay or aquitard layers are very 

important as they govern the 3D flow of groundwater at the local and regional scales. 

Groundwater and surface water analysis data are derived from different sources. Chemical 

tracers (Cl and Br) data are from six individual monitoring wells (this group of samples is 

referred to later as G1) drilled in 2007 in the ROI (depth: 9-85 m) for the purpose of 

hydrogeochemical monitoring with depth (Planer-Friedrich et al. 2012). The results of the 
14

C 

and 
13

C of dissolved inorganic carbon DIC (
14

CDIC) and (
13

CDIC), respectively, are from Hoque 

and Burgess (2012). They collected, in 2008, many groundwater samples, four of which were 

located in the ROI (this group of samples is referred to later as G2). These samples were from 

domestic and monitoring wells in the Titas area (depth: 15-336 m). The data from the surface 

water and rain water analysis are taken from Ahmed et al. (2010) and Sultana (2007), 

respectively. 

The data for the groundwater flow model application were collected from the physical 

parameters and hydrogeological properties of the aquifer. The model domain was identified, 

and the model conditions were determined using the hydrological and geological data. The 

measured water levels at a number of monitoring wells were prescribed at these boundaries. 

The model was calibrated for steady state by trial and error. The flow paths were analyzed 

through the model domain according to the velocity field and flow directions. 
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4. RESULTS AND DISCUSSION 

4.1. Lithologic modeling 

According to the author’s knowledge, hydrostratigraphical modeling work has not been done 

on a local scale in the ROI. All of the already available reports provide just a brief description 

of the lithology without concentrating on the relations between the individual sedimentary 

facies on the local scale. 

RockWorks (RW) version 2004
®
 (RockWare, Golden, Colo., USA) and the available 

lithologs were used to develop the 3D lithological model of the ROI. The sedimentary 

sequence is overlain in many parts by clay, as found elsewhere in Bangladesh. The thickness 

of the top clay varies throughout the ROI. The topographic elevation corresponding to each 

well was extracted from the DEM, modified to represent the topographic surface with all the 

features.  

The model was run after importing all the wells with their corresponding lithology intervals 

(top and base) in RW. The interpolation between the well logs in 3D was conducted by the 

algorithm of “lithoblending”. Each voxel is assigned a lithology value corresponding to a 

particular lithotype of the closest known data point and then the processes continue both 

horizontally and vertically to the next voxel and so on, until a voxel with a specified lithology 

value (that is the next known data point) is encountered. 

The sensitivity and validation of the 3D model was carried out as proposed by Mukherjee et 

al. (2007). Optimization was conducted by changing the node spacing of the model and 

testing how the model reacts. The model, which showed the least change toward the change in 

grid size was selected as final one. Verification was carried out using two well logs, which 

were excluded during building the 3D model. The results of the model optimization showed 

the model as being stable at a spacing of 100 × 100 × 2 m in the x, y, and z directions, 

respectively and the verification step delivered satisfactory results by visual comparison. 

Unfortunately, no detailed age and color information is available about the different 

lithofacies and therefore generalization and visual interpretation was used here to set the 

different aquifers and aquitards in the ROI. Color information is just available in some 

monitoring wells in the middle of the ROI, which was used here to guide and direct, to some 

extent, the interpretations of vertical extension of different proposed aquifers. Planer-
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Friedrich et al. (2012) showed the existence of reduced sediments (gray color) to a depth of 75 

m. Moreover, they stated that the second sandy layer follows the first clay and starts at a depth 

of 83 m and the sediment has a brown color, which reveals an oxidized state. Due to the fact 

that this is the only information available about the sediment color with depth, the clay layer 

above the brown sand is considered here to play a role of a hydraulic barrier between the 

upper and middle sand aquifers. This clay layer could be the laterite surface (clay layer) 

mentioned by Goodbred and Kuehl (2000), which was found at a depth of ~85 m in the 

Meghna floodplain. This surface, called palaeosol in other studies as well, plays a role in 

preventing downward movement of groundwater (Hoque et al. 2012; McArthur et al. 2016; 

Mihajlov et al. 2016). This idea, that the deeper low-As aquifer is relatively isolated from the 

shallow, high-As aquifer, is supported by the most recent investigations in Bangladesh and 

West Bengal (McArthur et al. 2016; Mihajlov et al. 2016).  

The five east-west cross sections in Figure 3 (corresponding to the white traverses in Figure 2) 

provide a detailed representation of the underground framework as inferred from the 3D 

lithologic modeling.  

 

Figure 2 Locations of available boreholes (green circles), and five east-west traverses (white 

lines: A-A`, B-B`, C-C`, D-D`, and E-E`) shown on a background map of the ROI acquired 

from Google Earth 7.1.2.2041 (acquisition date: 16.06.2014) 

8



Kanoua, W.; Merkel, B.:        Local hydrostratigraphy, hydrochemistry and groundwater modeling in Bangladesh 

 

 

 

 

9



Kanoua, W.; Merkel, B.:        Local hydrostratigraphy, hydrochemistry and groundwater modeling in Bangladesh 

 

Figure 3 Modeled cross sections along transects A-A`, B-B`, C-C`, D-D`, and E-E` in Figure 

2 (vertical exaggeration: 20) 

All boreholes in the ROI penetrate multiple levels of sand, silt clay, and clay materials of 

different lateral extent. It seems from the cross sections that the underground system can be 

divided into three sandy units separated by two clay and/or silty-clay layers. These clay and 

silty-clay confining layers do not have the same thickness all over their extensions and they 

play the role of aquitards due to their low hydraulic conductivity. Despite lateral 

discontinuity, the clay and silty-clay layers could introduce a vertical hydraulic anisotropy, 

influencing to some extent the groundwater flow pattern (Zijl 1999; Tóth 2009). Michael and 

Voss (2009) reported high anisotropy values for the hydraulic representation of the aquifer at 

the scale of the entire Bengal Basin. Moreover, modeling efforts by Hoque and Burgess 

(2012) showed that the depth < 70-100 mbgl is the threshold between the shallow and deep 

flow systems in the Bengal Aquifer System (BAS).  

The extent of the bottom sand aquifer is difficult to grasp as no wells penetrate the whole 

thickness of this unit. The five east-west cross sections reveal that the middle and bottom sand 

levels are not fully separated, rather they are connected in many parts throughout the ROI. 

This connectivity lets one draw the conclusion that the same conditions (oxidizing/reducing) 

might, to some extent, dominate in both proposed aquifers. Moreover, six plan-view maps at 

different depths (20, 30, 40, 50, 60, and 70 m) were created in RW and are presented in Figure 

4. These maps represent the lateral distribution of the different lithofacies at different depths. 

A complex lateral distribution is to be inferred from the different presented plan maps.  
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Figure 4 Plan-view maps showing the distribution of different hydrostratigraphic units at six 

different specific depths (20, 30, 40, 50, 60, and 70 mbgl) over the ROI 

According to the previous discussion, a system of three aquifers can be proposed in the ROI. 

The upper aquifer is disconnected laterally throughout the model area and extends to a depth 

of 70 m. This aquifer is considered the highly As-contaminated aquifer, where the sediments 

show gray color. The second aquifer extends from ~90 m to 140 m in depth, and it is 

connected in some parts, where the confining layer vanishes, with the coarse-sand aquifer 

located underneath. The second aquifer shows a brown sediment color, indicating oxidizing 

conditions.  

4.2. Chemical tracers and carbon isotopes (
13

C and 
14

C)  

Despite the availability of different hypotheses, the high As concentrations in the groundwater 

in Bangladesh are consensually explained by the desorption of arsenate through the reductive 

dissolution of solid Fe-oxides and/or the reduction of sorbed arsenate to arsenite (Nickson et 

al. 2000; Zobrist et al. 2000; Ravenscroft et al. 2001; Islam et al. 2004; McArthur et al. 2004; 

Polizzotto et al. 2005; Wang and Mulligan 2006; Akai et al. 2008; Tufano and Fendorf 2008; 

Planer-Friedrich et al. 2012). This reductive dissolution is found to be driven by DOC in 

groundwater. The nature, source, and release mechanism of this DOC are still under 
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discussion (Neumann et al. 2010; Planer-Friedrich et al. 2012). The potential sources of labile 

DOC in Bangladesh aquifers include terrestrial (plant/soil) organic matter such as peat 

dispersed throughout the aquifer sediments (McArthur et al. 2004; Planer-Friedrich et al. 

2012; Uddin and Kurosawa 2014) and surface water DOC brought to depth by natural flow or 

irrigation pumping (Harvey et al. 2002; Polizzotto et al. 2005; Neumann et al. 2010). 

Although different perspectives are available about which organic matter contributes to redox 

reactions in aquifer systems (Kelleher and Simpson 2006; Lehmann et al. 2008; Schmidt et al. 

2011), both new and old organic matter could potentially drive such reactions (Mailloux et al. 

2013), and the presence of specific enzymes in the bacterial community determines if the 

organic matter can be used as a substrate for metabolic processes (Ghosh et al. 2015). In the 

Bengal Basin, this reactivity of old organic matter in fine-grained channel-fill has also been 

reported (Desbarats et al. 2014).  

Chloride (Cl) and bromide (Br) are conservative chemical tracers, used to track the source of 

contamination in groundwater (Davis et al. 1980; Davis et al. 1998). The Cl and Br 

concentrations of all the water samples (G1 samples) from different depths are significantly 

positively correlated with correlation coefficient 0.99 (p ≤ 0.01) (Figure 5). This refers to the 

fact that both of them could be stemming from the same source. Vertical profiles of Br and Cl 

(Figure 6) show increasing trends with depth. The concentrations of Cl in surface water and 

rain water (green and blue vertical lines in Figure 6) are 50.5 and 15.1 mg/L, respectively. 

Moreover, all studies on surface water in the ROI reported negligible or zero Br in their 

samples (Ahmed et al. 2010). Therefore, it is impossible for Br (and Cl) to be derived from 

the surface (ponds/rivers). In other words, the only possible source must be in the 

underground. 

 

Figure 5 Cl versus Br concentrations for groundwater samples from different depths in the 

ROI 
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Figure 6 Cl and Br profiles with depth. Vertical blue and green lines represent Cl concen-

tration in rain water (Sultana 2007) and surface water (Ahmed et al. 2010), respectively 

Bromide and DOC (G1 samples) also show an increasing trend with depth and are 

significantly positively correlated (r = 0.8, p ≤ 0.01) (Figure 7). Generally, Br has a positive 

correlation with DOC (Kabata-Pendias 2001) and especially in areas enriched in peat, where 

high concentrations of Br are reported to be bound in the organic form “organo-bromine” 

(Biester et al. 2004). Microbial mediated dehalogenation of natural organo-bromine 

compounds releases DOC, which is the predominant mechanism of Br release from peat 

(Biester et al. 2006). The same correlation between Br and DOC has been reported before 

(Desbarats et al. 2014), and the high correlation was explained as both constituents being 

decay products of natural organo-bromines and are released in/from channel-fill sediments 

(aquitards). This explanation seems plausible; hence it needs further investigation. On the 

other hand, pore water in clay/peat layers in Bangladesh is reported to contain high residual 

salinity of up to 12000 mg/L for TDS (Total dissolved solids) (Ravenscroft et al. 2001), and 

since deposition, pore water got enriched in DOC due to the long contact with the organic-

rich deposits. Therefore, clay/peat layers are a potential source of DOC in the ROI.  
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Figure 7 Br versus DOC concentrations for groundwater samples from different depths  

The correlation between As from one side and Cl, Br, DOC, and TIC from another side (G1 

samples) is not significant. Arsenic distribution also does not show a clear trend as other 

elements do (increasing/decreasing trend with depth). The release of As from peat/clay layers 

is therefore unlikely, at least with the available data at hand. This finding is in accordance 

with previous results, as As in organic matter in Bangladesh is reported to be very low 

(Dowling et al. 2002). Thus, the source of As is present as a dispersed element sorbed to 

dispersed Fe-oxides in the subsurface. So, As will not be released from Fe-oxides unless 

organic matter is present to drive microbial reduction; thus, the flow regime is likely to 

redistribute the As-release trigger (OC), which is in the end responsible for the existing 

distribution of As in the subsurface. 

Total inorganic carbon (TIC) in groundwater consists of fluxes from atmospheric, mineral, 

and biological (oxidation of organic matter) sources. The influence of the atmospheric source 

is unlikely, at least in the ROI, as TIC is increasing with depth. It is also difficult to judge the 

carbonate contribution to TIC; however, the correlation between dissolved Ca plus Mg and 

TIC (G1 samples) is not significant. The TIC profile (up to a depth of 87.8 m) points, 

however, to the source being oxidation of organic matter, which is high in peat/clay layers. 

This is supported by the significant positive correlation between TIC and DOC (r = 0.98, p ≤ 

0.01). 

Measurement of 
14

CDIC in pore water is important for studying the oxidation of OC 

(McNichol et al. 1994). As mentioned before, the results of 
14

CDIC are taken here from Hoque 

and Burgess (2012). Despite the limited number of samples, the 
14

CDIC activity, ranging from 

7.07 to 104.71 pMC (percent modern carbon), shows a decreasing trend with depth (Figure 8). 

Hoque and Burgess (2012) calculated three groundwater ages from 
14

CDIC activities, using 
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100 pMC and 87 pMC as initial 
14

C activity with/without considering dilution of 
14

C due to 

interaction with aquifer carbonate minerals (taken as dead with respect to 
14

C). However, 

carbonate minerals are in general enriched in 
13

C (e.g., carbonate has δ
13

C close to 0 ‰) 

(Cark and Fritz 1997; Singh et al. 1998). Thus, the sharp depletion of 
13

CDIC (> 35 %) 

between 87.8 m (-13.76 ‰) and 140 m (-38.57 ‰) refers to the effect of an abnormal source 

of depleted 
13

C, and the effect of detrital carbonate dissolution could be ruled out. The δ
13

CDIC 

(-38.57 ‰) also falls far from the value expected for oxidized OC from C3 plants (-28 ‰) and 

C4 plants (-13 ‰) in the Bengal Basin (Sarkar et al. 2009), even after taking fractionation 

during plant residue decomposition into account (Schweizer et al. 1999; Wynn 2007). This 

13
C depletion is postulated to result from the dissolution of pedogenic calcite, which could be 

more 
13

C-depleted as low as -125 ‰ (Drake et al. 2015). The pedogenic calcite results as 
13

C-

depleted methanogenic methane (CH4) (from anaerobic degradation of organic matter in 

carbon-rich peat/clay layers) is oxidized in-situ and the produced hydrogen carbonate reacts 

with Ca (reaching 66 mg/L) to form calcite. The role of CH4 oxidization could be checked by 

measuring δ
13

C in carbonate minerals found in the second aquifer (> 90 mbgl). 

 

Figure 8 
14

CDIC activity (right) and δ
13

CDIC (left) profiles with depth 

From Figure 8, the sample from the depth of 87.8 m shows enrichment in 
13

CDIC (> 5 ‰) 

compared to the sample from the depth of 15 m (soil-CO2), and dilution of 
14

CDIC. The effect 

of detrital carbonate dissolution (δ
13

C close to 0 ‰) is excluded here due to the reasons 

mentioned before. Anaerobic degradation of organic matter (in peat/clay layers) eventually 

results in the production of CH4 and CO2, and this CO2 is more enriched in 
13

C (Whiticar 

1999), especially in comparison to soil-CO2 (Han et al. 2014). Therefore, and recalling that 
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TIC increases with depth (samples G1), it is proposed that the 
13

CDIC profile (up to a depth of 

87.8 m) is produced by the superposition of two independent carbon profiles different in 
13

C, 

each is generated from a different source located at a distinct depth. These two sources could 

be the soil-CO2 and methanogenesis-CO2. Methane measurements were not conducted for the 

available water samples; however, ammonium (NH4), which is an indicator of microbial 

activity and intensity of organic matter degradation in the anoxic groundwater (Dowling et al. 

2002; Postma et al. 2007), shows an increasing trend with depth (G1 samples), and 

methanogenic CH4 is normally associated with it.  

The discrepancy between 
13

CDIC enrichment/depletion above/below the depth of 87.8 m, 

respectively, could be explained by the existence of shallow and deep flow systems in the 

BAS. Hoque and Burgess (2012) reported from modeling investigations the existence of 

shallow (< 70-100 mbgl) and deep (> 150 mbgl) flow systems in the eastern part of 

Bangladesh. The authors did not find a trend (samples > 150 mbgl) with respect to the basin’s 

eastern margin. However, taking their analyses of all the water samples > 70-100 mbgl, Ca 

increases with distance from the eastern margin (r = 0.5, p = 0.06). Also Majumder et al. 

(2013) used borehole temperatures and concluded from deep observation wells on the eastern 

margin of Bangladesh that deep recharge does take place. Thus it can be postulated that the 

depth 70-100 m is the threshold between the shallow and deep flow systems in the BAS. Deep 

groundwater is recharged through the outcrops in the eastern hilly regions and shallow 

groundwater is recharged from the surface. Due to the slow flow and high residence time, 

deep groundwater gets gradually depleted with 
13

C through dissolution of pedogenic calcite 

along its flow path. On the other hand, shallow groundwater circulation takes place over a 

time interval of less than hundred years (Ibid), and the two carbon pools, with different 
13

C 

signatures, get mixed. The oxygen and hydrogen isotope ratios (samples G1 and G2) plot on 

the meteoric water line (data are not shown), indicating the origin as local precipitation, and 

the lower δ
18

O (-4.21 ‰) in the deep groundwater sample is in the range reported previously 

for precipitation in Bangladesh (Aggarwal et al. 2000), and does not indicate climatic 

differences/palaeo-recharge. The case of the groundwater samples showing 

enrichment/depletion relative to a critical value may not exclusively indicate climatic 

differences, and other factors (e.g., the continental effect) need to be carefully evaluated. 

The results of the chemical tracers and 
14

CDIC are in congruity with the previous facts and 

findings. Generally, the highest amounts of DOC are found in organic-rich aquitard 

environments (Thurman 1985). Moreover, the aquifer/aquitard interface is a very important 
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zone, which provides a mixing zone supporting microbial activities within the aquifers, and 

producing a change in the chemical composition of groundwater (McMahon 2001). Peat 

layers are also known to produce “tea” colored water due to the microbiological decay of the 

OC in these environments (Aguilar and Thibodeaux 2005). Different studies found that 

terrestrial (plant/soil) DOM at depth from dispersed sedimentary organic matter such as peat 

adds a labile substrate to fuel bacteria and maintain reducing conditions in the aquifer 

(Dowling et al. 2002; McArthur et al. 2004; Mladenov et al. 2010). Others showed that the 

presence of peat is considered to have a critical role in the occurrence of high As 

concentration in groundwater (Uddin and Kurosawa 2014). Other evidence also comes from 

stable isotopes (O), as investigations in Bangladesh and West Bengal showed that high and 

low-As groundwaters have different isotopic signatures (Desbarats et al. 2014; Planer-

Friedrich et al. 2012). This might imply different recharge sources/paths, or groundwater is 

influenced by isotopic fractionation between water and organic matter when they come into 

contact (Chen et al. 2016). Moreover, As is found to peak at different depths, e.g., 15, 30, 55, 

60, 75, and 100 (Nickson et al. 2000; McArthur et al. 2001; Ravenscroft et al. 2001; Zheng et 

al. 2005; Dhar et al. 2008; Tareq et al. 2013), which could be explained by the wells’ 

proximity to the carbon sources, with peat/clay layers being located at different depths 

(stratigraphic model).  

Recent, surface-derived OC (e.g., water of excavated ponds, latrines, irrigation return flow) 

advected within the aquifer is proposed by different researchers as the main source of carbon 

fueling the reductive dissolution and releasing As (Harvey et al. 2002; Polizzotto et al. 2005; 

Neumann et al. 2010; Mailloux et al. 2013). However, groundwater contamination with As in 

Bangladesh and wastewater high in OC (from septic tanks and pit latrines) were shown to be 

inversely correlated (van Geen et al. 2011; Leber et al. 2011; McArthur et al. 2012). This 

points to the fact that the wastewater infiltrating downward in the aquifer does not induce As 

mobilization until something changes in the underground. This might be the infiltrating water 

passing through/near a carbon-rich source in the underground, and getting loaded with the 

trigger of As release. Mailloux et al. (2013) stated that advected OC from the surface controls 

the aquifer redox status and fuels As release in the aquifer system in Bangladesh. Their study 

area is characterized by high As where sand extends to the surface, and vertical infiltration is 

relatively high. However, recharge-induced flushing has been proposed to explain low-As 

concentrations at shallow depths beneath sandy surficial sediments (Stute et al. 2007; Aziz et 

al. 2008; van Geen et al. 2008; Weinman et al. 2008; Hoque et al. 2009). Thus, this 

paradoxical effect has to be investigated further. Moreover, the most As-affected areas are 
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located where the thick clay surficial layer exists, which slows down/impedes, to a high 

extent, the vertical percolation of surface water loaded with OC (Aziz et al. 2008; Weinman et 

al. 2008; Hoque et al. 2009). Other studies which supported the surficial source (pond 

water/re-infiltrating irrigation water) of carbon also reported old carbon at the depth of 

sampling (Harvey et al. 2002; Klump et al. 2006; Neumann et al. 2010), and this discrepancy 

in the carbon ages is explicable in terms of the reservoir of carbon and its derivation from 

older buried peat. Moreover, the supply of fresh carbon from the surface to the subsoil 

stimulates the microbial mineralization of older carbon (Fontaine et al. 2007). Sengupta et al. 

(2008) and Datta et al. (2011) showed that pond water, at least in their study areas, does not 

provide OC to the aquifers. Also, Klump et al. (2006) concluded, using environmental tracer 

data and conceptual groundwater flow and transport modeling, that re-infiltrated irrigation 

water is excluded from being a direct cause of As release. 

4.3. Groundwater flow modeling 

Modeling the evolution of the As-rich groundwater in Bangladesh with much confidence is 

not an easy task, if not impossible, due to its complex nature coming from the different factors 

affecting it. It is possible, however, to carry out some simple modeling to show how some 

factors affect this evolution. Based on the already presented hydrostratigraphic and chemical 

results, it is possible to explain the heterogeneities of As concentration using groundwater 

flow in combination with topography and the identified source of the OC, namely, peat silt-

clay layers, that drives Fe-oxides reduction. 

From the water table monitoring wells, it is clear that topographic elevation corresponds with 

the hydraulic head (Figure 9). The correlation test showed a significant positive correlation 

between the topography and the water table (n = 43, r = 0.7, p < 0.001). The same trend was 

noticed by Weinman et al. (2008) in another study in Araihazar in Bangladesh. Also, 

groundwater age investigations by Radloff et al. (2015) showed the presence of newer 

groundwater in the village (elevated area) and older groundwater closer to the discharge area 

(low-lying area) with an increasing trend of As and age. This refers to the fact that the local 

topography does have an effect on the groundwater flow. Thus, the man-made elevation sets 

up a higher hydraulic head and the greater potentiometric surface of the elevated areas 

suppresses the flow into these areas from the low-lying ones. That means, that this variation in 

the local topography may cause hydraulic short-circuiting of the shallow flow system, which 

was also proposed by other researchers (Michael and Voss 2008; Burgess et al. 2010). This 

18



Kanoua, W.; Merkel, B.:        Local hydrostratigraphy, hydrochemistry and groundwater modeling in Bangladesh 

could be a plausible explanation for the fact, that adjacent wells separated by just a few meters 

may yield water from the same depth yet have contrasting high and low As content.  

 

Figure 9 Correlation plot for the surface topography and water table elevation for all water 

table measurements in the Titas area 

A 3D flow model was build up with PHAST. Boundary conditions (front and side boundaries) 

were set to specified head boundary conditions according to the measured head in the margin 

wells. Dispersivity and hydraulic conductivity values were taken from Planer-Friedrich et al. 

(2012). The values of hydraulic conductivity in the aquifer and evapotranspiration (as flux 

boundary conditions) are adjusted with a view to obtaining the observed hydraulic head data. 

Groundwater flow was modeled as steady state. The weighting parameters used by PHAST 

for the space and time differencing were left as the default values 0 and 1, respectively. 

Figure 10 shows the modeled groundwater flow velocity vectors. The model shows the 

horizontal and vertical flow patterns (streamlines) at the local scale. This subsurface 

groundwater circulation is evidence that the local topography plays a role at the local scale. 

This fact is of vital importance in Bangladesh, where it might play an important role in 

groundwater contamination by As. The results of the steady state flow model suggest the 

existence of a local scale flow net and the directions of groundwater flow are given by 

flowlines pointing that the local flow is from the manmade features toward the low-lying 

(cultivation) areas. The average vertical flow velocity is compatible with the previously 

reported one, 3 m/a (Dowling et al. 2002). The simulated streamlines do affect the advection 

velocity of the plume of contaminant laterally and vertically to a high extent. Whether these 

differences are large enough to alter sufficiently the conclusions of a contaminant risk 
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assessment has to be judged for each area individually. In fact, this will eventually depend on 

the precision of the other available hydraulic parameters of the aquifer model. 

 

Figure 10: Flow vectors calculated by PHAST shown as a base point with a line indicating 

velocity and direction (left: side view, right: front view) 

The simulated flow net could play the role of a transporting and distributing mechanism to 

distribute the contaminant upward and sideward in the underground farther from the origin. 

Also, this local circulation might leave behind at some depths stagnant zones, which could be 

a reasonable explanation for the reported juxtaposition of the old and recent groundwater ages 

at the same depth. With regard to As, this local scale flow net might be responsible for the 

patchy nature of As contamination reported in different studies (McArthur et al. 2004; Zheng 

et al. 2004; Zheng et al. 2005; Anawar et al. 2011).  

Consequently, topography modification and pumping affect groundwater flow paths, which 

might induce changes in the underground e.g., shorten the residence time of groundwater and 

groundwater chemistry. Such changes can be responsible for stimulating microbial reactions 

that target the solid phase and destabilize sedimentary OC (Neumann et al. 2014). 

5. CONCLUSIONS 

Despite the limited amount of data and number of sample locations in this study, which may 

not be sufficient to understand the processes operating at the local scale (vertically and 

laterally), different concluding remarks could be drawn. 

The hydrostratigraphic model has shown that silty-clay aquitard formations can neither have a 

uniform thickness nor occur at a uniform depth in the shallow aquifer, at least in the region of 
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interest. The anisotropy which might be induced by these irregularly distributed units beside 

the distinct continuous silt/clay layer (laterite surface) are important for the security of the 

deep groundwater. The second aquifer (> 100 mbgl) seems, at least in the studied scale, 

isolated to some extent from the upper shallow aquifer, which lessens the possibility of 

downward migration of arsenic/carbon-loaded groundwater. Thus, the reported arsenic, > 10 

µg/L, in groundwater from the deep aquifer must have been released due to in-situ input of 

organic carbon. Thus, future studies regarding the arsenic problem in groundwater in 

Bangladesh should concentrate on the role of aquitards, whose spatial distribution affects the 

development of any hydrogeology-based mitigation scheme.  

Highly populated deltas and floodplains are arsenic-affected areas (Winkel et al. 2008; 

Syvitski et al. 2009). The manmade changes induced by people in such areas by sediment 

mining for changing the natural landscape (beside other anthropogenic factors), might alter 

natural hydrological processes and groundwater flow paths. This is of vital importance for the 

sake of forecasting where arsenic exists, determining its future evolution, and implementing 

mitigation strategies. The results of the flow simulation showed that small anthropogenic 

perturbations (e.g., earth cutting to fill/raise land) are responsible for altering the subsurface 

flow regime and consequently the subsurface spatial distribution of contaminations. Such 

alterations in flow should be judiciously planned prior to major alterations in the landscape or 

groundwater extraction. Thus, arsenic-low wells may turn out to be contaminated after 

hydraulic flow perturbation; it is therefore important that safe wells be periodically re-tested 

for arsenic, especially after the onset of intensive irrigation pumping and large-scale 

excavation projects. 

The idea that deeper irrigational pumping might spread arsenic to previously uncontaminated 

deep aquifers seems not to be correct in the light of the available data. The shallow and deep 

groundwaters appear to be isolated, and possible recharging of the deep aquifer from the 

eastern margin might lessen the problem of quantitative sustainability. 
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Abstract: Evapotranspiration (ET) is the most critical parameter in the hydrologic cycle with 

respect to determination. Several mathematical equations exist to estimate this value. Some of 

them are based on energy or water balances coupled with data from meteorological stations. 

In this work, the actual evapotranspiration (AE) in Hanoi area was estimated by means of the 

Surface Energy Balance Algorithm for Land (SEBAL) with four Landsat Thematic Mapper 

images (TM5). In addition, meteorological data from four weather stations from 1961 to 2010 

was used. The spatial and temporal distribution of AE was visualized. Then, the estimated AE 

was compared with the potential evaporation (PE) calculated using the Penmann – Monteith 

equation and evaporation (Ep) measured with the pan class A. The means of AE range 

between 1.73 mm/d and 2.25 mm/d, which were calculated for February and May, 

respectively. The spatial and temporal distribution of AE was also compared with the land use 

vegetation cover map for 2007. Finally, using the evaporative fraction, the seasonal AE was 

interpolated for the entire area. The annual AE estimated by the SEBAL model is 751 mm 

accounting for 86% of PE and 82% of Ep. 

Keywords: actual evapotranspiration, potential evaporation, Penmann – Monteith equation, 

Hanoi, SEBAL, Vietnam. 

1. INTRODUCTION 

Because water is a prerequisite for human life, it is understandable how difficult human life in 

semi-arid or arid areas can be because of water shortage. Despite being considered a city rich 

in water resources and tropical climate, Hanoi faces as well several water supply issues 

(Nguyen V. Lam et al., 2012) such as: 
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 Water pollution due to industrial development, 

 Over-pumping of groundwater,  

 Leakage of water from the water supply network in summer when water demands 

reach the highest peak, and 

 Steady population growth and water demands increase. 

Recently, the major amount of water for Hanoi is extracted from groundwater. Another source 

is surface water from the Hoa Binh Reservoir 50 km from Hanoi. The total amount of water 

that is being supplied is approximately 1,600,000 m
3
/d (VUSTA, 2012). Although this is a 

very high amount, it is still hard to meet the actual demand during the summer season. This 

issue requires thorough planning regarding integrated water resources management in order to 

compensate the water shortage during summer. To handle the problem, it is necessary to have 

a better understanding and knowledge of the water balance with all input and output 

parameters. Among them, the actual evapotranspiration (AE) is probably one of the most 

critical parameters. It is difficult to determine precisely and can only be estimated. However, 

to the best of the authors’ knowledge, there is not yet any sufficient study estimating this 

parameter in the area. Only educated guesses about the actual evaporation of the Hanoi area 

exist in the literature (Nguyen V. Lam et al., 2012) and unpublished reports. Based on an 

educated guess, is is supposed that ET could be accounted for around 80% potential 

evaporation, because Hanoi is mostly covered by lakes, ponds, streams, and a vast area of 

paddy rice. 

ET is one of the six major components of the hydrological cycle. Up to 60 % of land 

precipitation returns to the atmosphere by land evapotranspiration  (Oki; Kanae, 2006; Jung, 

Martin et al., 2010). ET is composed of two processes being surface evaporation and plant 

transpiration. ET is controlled by several factors such as temperature, humidity, wind speed, 

water availability, soil type, plant type, and morphology (Bastiaanssen, 1998a; Hoekstra, 

Shachak, 1999; Khalili et al., 2014). ET can be measured in the field for one spot, but it is 

difficult, if not impossible, to interpolate these spot values to a regional scale (Allen, 1998; 

Paron et al., 2014). Until now, there is no comprehensive study on the AE in Hanoi; only 

provisional values based on experience or theoretical knowledge is available (Nguyen V. Lam 

et al., 2012). This lack of information has strongly motivated the authors to determine a more 

accurate AE value for the Hanoi area. 
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Several methods based on the energy balance and water balance equation may be used to 

estimate the AE. Among them are the remote sensing based method of SEBAL (Bastiaanssen 

1998a, 1998b, 2000) and the Mapping Evapotranspiration at High Resolution using 

Internalized Calibration (METRIC) (Allen et al., 2007a; Allen et al., 2007b) are two 

conventional procedures. Some other models are the Two Sources Energy Balance model 

(TSEB) (Kustas, Norman, 2000), the Surface Energy Balance System (SEBS) (Su, 2002), the 

Remote Sensing of Evapotranspiration (ReSET) (Elhaddad, Garcia, 2008), the Analytical 

Land Atmosphere Radiometer Model (ALARM) (Ayman A Suleiman et al., 2009), and the 

Simplified Surface Energy Balance Index (S-SEBI) (Roerink et al., 2000). A review for S-

SEBI, SEBS, TSEB, METRIC, and SEBAL can be found in (Liou, and Kar, 2014). Based on 

the surface energy balance equation, these methods calculate all components of the energy 

balance and then estimate the energy available for evaporation as a residual value. Because 

the heat that absorbed to convert one kilogram of water to vapor is a constant value, AE can 

be calculated from the consumption of energy for converting water to water vapor. 

Water balance methods are based on the water balance equation, which links the input and 

output components. AE can be evaluated if data on runoff, precipitation, condensation, 

infiltration, and percolation is available (Allen, 1998; Elizabeth A. H., and Robert E. C., 2013, 

Senay et al., 2011, 2011; Elizabeth A. H., and Robert E. C., 2013). 

SEBAL model costs are low, but it is a complicated procedure. It is obliged to select „hot” 

and “cold” pixels in SEBAL model. In the „hot” pixels, the latent heat flux is assumed to be 

zero, so the ET based on equation (2) should be zero. In the cold pixels, the sensible heat flux 

is theorized to zero and surface temperature, and near-surface air temperatures are assumed to 

be similar to each other (Bastiaanssen, 2000). However, SEBAL does not work with images 

covered by cloud. In addition to, a specific regression model is used in SEBAL, which might 

not be suitable for any topography. There is a big difference between AE in mountainous and 

plain areas. Thus one has to separate mountainous and plain areas in the calculation. 

SEBAL model has been tested for various climatic conditions, and thesresults are reasonable 

(Bastiaanssen et al., 2005). One big advantage is that SEBAL requires only minimum ground-

based measurements. In this study SEBAL was applied to estimate the daily AE for Hanoi 

using four Landsat TM5 images. Subsequently, the spatial and temporal distribution of AE is 

obtained. Finally, AE was compared with Ep (evaporation measured at the pan class A at 

weather stations) and PE.  
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Based on data of temperature, wind speed, sunshine duration, and humidity at weather 

stations  PE can be calculated by the equations of Blaney – Criddle, Thornthwaite, 

Hargreaves, Turc, and Penmann – Monteith (Wilm et al., 1944; Turc, 1961; Hargreaves, G.H. 

and Samani, Z.A, 1985; Allen, 1998; Jacobs, Satti, 2001; Senay et al., 2008; Bhaskar R. 

Nikam et al, 2014; Djaman et al., 2015). This leads to an estimated PE for the whole Red 

River Delta (including Chinese territory).  Le et al., (2012) recommended the use of the Turc 

and Penmann – Monteith equations because th other equations only consider temperature or 

sunshine duration so that the estimated PE values are higher than the evaporation actually 

measured in pans class A at the weather stations. In this study, PE was estimated by the 

Penmann – Monteith equation included in the software CROPWAT (Allen 1998). 

2. STUDY AREA 

Hanoi is the capital of the Socialist Republic of Vietnam and located in the northern part of 

Vietnam within the Red River Plain. Its area is 3,324 km², and the metropolitan area ranges 

from 20
0
53’ to 21

0
23’N latitude and from 105

0
44 to 106

0
02E longitude. There are two main 

types of terrains: the plain area and the mountainous area. The topography decreases gently 

from north to south and from west to east. The mountainous area covers around 5 % of the 

study area and is concentrated in the northern and western part. The highest peak with 1,281 

meters above sea level (m.a.s.l) lies in the west. Agricultural areas cover most of the Hanoi 

Plain, and the mean elevation ranges from 5 to 15 m.a.s.l (highlighted with green color in the 

land use vegetation cover map in Figure 1). The Red River, the mainstream in North Vietnam, 

flows through the Red River delta from the northwest to the southeast. Some small rivers in 

Hanoi are Duong, Cau, Ca Lo, Day, Lu, Set, Nhue, To Lich, and Kim Nguu. The biggest lake 

in the city is West Lake.  

Hanoi is characterized by a warm, humid subtropical climate. This is the typical climate of 

northern Vietnam with heavy rain during the monsoon season. It is hot and wet in summer, 

and cold and drier in winter. The average precipitation between 1961 and 2010 was around 

1700 mm/year. Significant rainfall occurs from May to October, accounting for 84 % of 

annual precipitation. The precipitation peaks in July and August (the warmest months of the 

year) with nearly 300 mm/month (Figure 2). 
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Figure. 1. The study area and the land use vegetation cover map from May 2007 (based 

on the Landsat TM5 image from May 8, 2007).  

During the winter season, Hanoi receives less rainfall with around 25 mm/month 

corresponding to the lowest temperature. PE changes only slightly due to seasonal differences 

because the humidity is relatively high throughout the year. The average PE is about 

73 mm/month with a total PE of nearly 900 mm/a accounting for about 50 % of precipitation 

(NCHMF, 1961-2010). 

 

Figure. 2. Monthly averages of the meteorological parameters in Hanoi modified according to 

(NCHMF 1961-2010) 
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3. METHODOLOGY 

AE calculation in SEBAL is based on the surface energy balance equation (Monteith, 

Unsworth, 1990; Bastiaanssen, 1998a, 2000; Allen et al., 2007b; Cuxart et al., 2015). 

                                                  𝐿𝐸 = 𝑅𝑛 − 𝐻 − 𝐺                                                                 (1) 

where Rn is the net radiation (W/m
2
), H is the sensible heat flux (W/m

2
), G is the soil heat flux 

(W/m
2
), and LE is latent heat flux (W/m

2
). If all parameters on the right side of equation (1) 

are known, the latent heat flux can be calculated as a residual value for each cell. That value is 

then converted to the height of the water column undergoing ET based on the latent heat of 

vaporization () and water density (w). 

                                                     𝐸𝑖𝑛𝑠𝑡 =
𝐿𝐸

𝜆𝜌𝑤
                                                                          (2) 

where Einst is the instantaneous evapotranspiration. 

The net radiation (Rn) is calculated according to equation (3). 

                           𝑅𝑛 = (1 − 𝛼)𝑅𝑆_𝑖𝑛 + 𝑅𝐿_𝑖𝑛 − 𝑅𝐿_𝑜𝑢𝑡 − (1 − 𝜀0)𝑅𝐿_𝑖𝑛                                     (3) 

 

where  is the surface albedo, RS_in is the incoming shortwave radiation (W/m
2
), RL_in is the 

incoming longwave radiation (W/m
2
), 0 is the surface emissivity, and RL_out is the outgoing 

longwave radiation (W/m
2
). All parameters used to calculate Rn can be found or estimated 

merely in the header file attached in image packages (Waters et al., 2002) 

The soil heat flux (G) is the rate of heat storage in the soil and vegetation due to conduction. 

A common way to compute G is using equation (4) (Bastiaanssen, 2000) for calculating G/Rn. 

                          𝐺 𝑅𝑛⁄ =  𝑇𝑠 𝛼(0.0038𝛼 + 0.0074𝛼2)(1 − 0.98𝑁𝐷𝑉𝐼4)⁄                                (4) 

where, Rn is the net radiation (W/m
2
), Ts is the surface temperature (

0
C),  is the surface 

albedo, and NDVI is the Normalized Difference Vegetation Index. Finally, G is calculated by 

multiplying G/Rn by Rn. 
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The sensible heat flux (H) is the process where heat is transferred from the earth's 

surface to the atmosphere by conduction and convection. The classical computation 

of H is described in (Farah, Bastiaanssen, 2001; Waters et al., 2002) as shown in 

equation (5). 

                                                 𝐻 =
𝜌𝑐𝑝𝑑𝑇

𝑟𝑎ℎ
                                                               (5) 

where  is the air density (kg/m), cp is the air-specific heat capacity (at constant pressure), 

1004 J/(kg∙K), dT is the temperature difference between 0.1 m, and 2.0 m above ground, 

respectively, and rah is the aerodynamic resistance to heat transport (s/m). 

The sensible heat flux (H) is considered as a function of the temperature difference, surface 

roughness and wind speed (Sobrino 2002). With the data from the meteorological stations, dT 

and rah can be estimated. In the SEBAL the relationship between the temperature difference 

(dT) and the surface temperature (Ts) is assumed to be linear (Bastiaanssen, 1998a; Di Long et 

al., 2011; Waters et al., 2002). 

                                                            𝑑𝑇 = 𝑎𝑇𝑠 + 𝑏                           (6) 

where a and b are the correlation coefficients between dT and Ts.  

To estimate a and b in equation (6), the „hot” and “cold” pixels (or anchor pixels) should be 

used. The „hot” and “cold” pixels should be in the area of interest. The “cold” pixel is 

selected to meet the requirements of a wet pixel covering by vegetation. The „hot” one is 

selected as a dry and bare agricultural field, where ET is assumed to be zero (Waters et al., 

2000). Both of these “anchor” pixels should be located in large and homogeneous areas. It is 

because the sensible heat flux (H) is known and reliable at anchor pixels (Bastiaanssen 

,1998a, 2000; Waters et al., 2002). Based on equation (5), the aerodynamic resistance (rah) and 

the temperature difference (dT) can be calculated. In this process, the Monin Obukhov Length 

(L) equation (Waters et al. 2002) is used to determine the stability status of atmosphere in 

interactive conditions. Depending on the value of L, checking the stability of momentum and 

heat transport, and the friction velocity is needed. When rah and dT are stable, or the alteration 

is not significant, they can be accepted (Webb, 1970; Paulson, 1970; Waters et al., 2002). 

Because dT and Ts were assumed to be linear (equation 6), a and b can be determined on 

anchor pixels. Subsequently, dT can be interpolated for another pixel of the whole area in the 
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model based on a,b and Ts. Then, rah can be extrapolated for the entire area. Finally, the 

instantaneous evapotranspiration is calculated. This value is representative for ET at the times 

of satellite image acquisition. 

To interpolate the daily actual evapotranspiration, the evaporative fraction was used 

(Bastiaanssen 2000). Several authors also use that factor (Santos, C. A. C. et al., 2010; Sun et 

al., 2011; Mcebisi Mkhwanazi, 2014; Jassas et al., 2015) to estimate AE for their regions, and 

AE values were acceptable.    

                                                              Λ =
𝜆𝐸

(𝑅𝑛−𝐺)
                                                                  (7) 

To extrapolate evapotranspiration to more extended time periods, such as one day or longer, 

Bastiaanssen et al., (2005) omitted G. It is because G is normal much lower than Rn. Thus, (Rn 

– G) was reduced to Rn; then AE is calculated as 

                                                      𝐴𝐸 =
Λ𝑅𝑛24

𝜆𝜌𝑤
86400. 103                                                     (8) 

where AE (mm/d) is the daily actual evapotranspiration, Rn24 (W/m
2
) is the daily average net 

radiation, ρw is the water’s density (kg/m
3
), and  is the latent heat of vaporization (J/kg). 

4. RESULTS AND DISCUSSIONS 

With four images free of cloud cover the results of the SEBAL model are four daily AE maps 

for the acquisition dates of October 28, 2006; February 1, 2007; May 8, 2007, and September 

29, 2007 (Figure 3). The daily AE values vary from 0 mm/d to 6 mm/d. The maximum mean 

value is in May, and the minimum is in February, with 2.3 mm/d and 1.7 mm/d, respectively 

(Table. 1).  
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Figure. 3. Spatial and temporal distribution of AE in Hanoi calculated by means of the 

SEBAL model during the acquisition dates listed above each image. 

This is because the temperature is high during the summer period (including May) and the 

number of sunshine hours is also higher than during other seasons. In the winter season 

(including February), the temperature is low, and humidity is highest while there is less 

sunshine than in other seasons. Subsequently, the mean AE will be lower during winter. In 

each image, the higher AE values appear above rivers, lakes and free water surfaces. This is 

visible in the image from February 1, 2007. Most of the agricultural land is covered by water 

during the period in which the new paddy rice harvest is growing. AE in February shows the 

lowest values despite vast free water bodies. The lowest values of AE in each image are in the 

congested areas, and bare soil zones where PE is high but the water quantity available for 

evaporation is low. 
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Table. 1. Statistical evaluation of the AE maps  

Statistical parameters Oct 28, 2006 Feb 01, 2007 May 08, 2007 Sep 29, 2007 

Maximum (mm/d) 5.3 5.1 5.8 5.2 

Arithmetic mean (mm/d) 2.1 1.7 2.3 2.2 

Standard deviation 0.72 0.74 0.54 0.54 

Sum (mm/d) 7,519,800 6,401,500 8,360,300 8,064,400 

Figure 4, and Table 2 show the comparison of AE estimated by SEBAL and PE calculated by 

Penmann – Monteith equation using the meteorological data and Ep measured in four weather 

stations. All AE values estimated by SEBAL are lower than the corresponding PE and Ep 

values, which is plausible. AE accounts for 80 % to 90 % of PE and 70% to 79% of Ep. In 

seasonal scale, the difference of AE, PE, and Ep is not much. 

 

Figure. 4. Comparison of AE estimated by SEBAL and PE calculated by Penmann – Monteith 

equation on (a) daily and (b) seasonal scale. 

The distribution of AE calculation is shown in Table. 3. AE values of 2 to 3 mm/d in three out 

of four images account for around 60 % of the area, while the majority AE (nearly 52 %) in 

the February 2007 image shows the range between 1 and 2 mm/d. Values of over 5 mm/d 

Table. 2. Daily actual evapotranspiration and seasonal actual evapotranspiration 

Evaporation 

(mm/d) 

Daily  Seasonal  

Oct 2006 Jan 2007 May 2007 Sep 2007 Oct-Dec Jan-Mar Apr-Jun Jul-Sep 

AE  2.1 1.7 2.3 2.2 2.0 1.7 2.2 2.3 

PE  2.6 1.9 2.7 2.5 2.5 1.9 2.6 2.6 

Ep  2.74 2.25 3.12 2.78 2.63 1.89 2.93 2.62 
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occur only in small areas making up less than 1 % of the area of interest. The mean of AE in 

the images on October 2006, and February 2007 (with 2.1 and 1.7 mm/d, respectively) are 

lower than the mean of AE on May and September 2007 (with 2.2 and 2.3 mm/d, 

respectively) (Table. 1). However, the areas with AE values > 5 mm/d in these images 

(October 2006 and February 2007) are larger (with 0.55% and 0.13%, respectively) than May 

and September 2007 (with 0.07 and 0.02, respectively) (Table 3). This is because there are 

small mountainous areas in these images (explained below).  

Table. 3. Distribution of daily actual evapotranspiration in the area of interest (%). 

Range of AE (mm/d) Oct 28, 2006 Feb 1, 2007 May 8, 2007 Sep 29, 2007 

0-1 1.4 14 2.4 2.4 

1-2 18 52 24 33 

2-3 58 30 67 59 

3-4 19 3.6 6.0 5.5 

4-5 3.2 0.79 0.57 0.23 

> 5 0.55 0.13 0.07 0.02 

Total 100 100 100 100 

Although there are only four images without cloud cover available in the study area, it is 

assumed that they sufficiently represent the four seasonal periods in this area and that the 

mean seasonal values can be interpolated from these values. The mean seasonal AE values are 

lowest from January to March while the highest values are from April to June with 156 mm 

and 212 mm, respectively (Table. 4). The annual AE calculated with the SEBAL model is 751 

mm (Table. 4) compared with 873 mm of PE, and 920 mm of Ep (NCHMF 1961 – 2010). AE 

accounts for 86 % and 82% of PE and Ep respectively. 

Table. 4. The actual evapotranspiration extrapolated for one year from November 2006 to 

October 2007. 

Statistical 

parameters 

October - 

December 

January - 

March 

April - 

June 

July – 

September 

Minimum (mm) 0 0 0 0 

Maximum (mm) 489 471 545 470 

Mean (mm) 189 156 212 195 
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Small mountainous areas in the west and northeast of Hanoi cause a minor overestimation of 

AE in the three images from October 28, February 1, and September 29. This overestimation 

is a result of the effect of the higher altitude and its related lower temperature. The 

temperature difference (dT) is not equal at low and high altitude, and the aerodynamic 

resistance (rah) is only obtained from the wind speed at 200 meters above the surface. Wind 

speed at 200 meters was calculated from the wind speed at the weather station, which is not 

representative for the entire area including the plain and mountainous areas. That causes an 

error in the mountainous areas. However, this error is not a big problem, because the high 

values (higher than 5 mm/d) account for less than 1 % of the area. The best way to improve 

the AE maps is to omit the mountainous areas in the calculation or to interpolate between 

surrounding values. Using the first option, the error appeared with dT estimation can be 

minimized.  

5. CONCLUSION 

SEBAL was applied to estimate the AE in Hanoi for a single year. The predicted AE was 

compared with the PE calculated using the Penmann – Monteith equation. It is probably the 

first estimation of AE in the area of interest. The results seem to be plausible and consistent 

with the ET theory. Low values are found above the bare soil and urban areas, whereas high 

values appear above surface water bodies.  

This study also indicates that SEBAL can be applied in humid areas and it can help to 

calculate the groundwater recharge for the Red River delta of Hanoi.  

If AE measured in the field at certain spots is available, the estimated AE would be more 

accurate because then the model could be improved and calibrated with this data. 
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Abstract 

Estimation and projection of Suspended Sediment Load (SSL) is critically important in a successful 

application of water resources management. This study introduces a novel method applied on a case study 

(upper reach of the Spree River in Germany) to project future SSL by integrating Artificial Intelligence 

(AI) with the Soil and Water Assessment Tool (SWAT) model. The AI methods encompass Adaptive 

Neuro Fuzzy Inference System (ANFIS), feedforward, cascade feedforward, pattern recognition, radial 

basis, generalized regression and layer recurrent neural networks. They were evaluated to model SSL 

using streamflow discharges as inputs. Subsequently, the optimal structure from the above methods was 

used to estimate the amounts of seasonal and yearly SSL transported by the river during the period 1997-

2006. The future climate change data obtained from regional climate change model (CLM-A1B) was used 

as inputs to the calibrated SWAT model to project the near future discharges through two periods (2021-

2030 and 2041-2050). Lastly, the impact of climate changes on SSL was assessed by employing future 

discharges to the best evaluated method. Results revealed that the ANFIS model outperformed all the 

other methods. R
2
 and RMSE of ANFIS during the validation period were equal to 0.60 and 87.41 mg/l, 

respectively. The SSL was projected to decrease by almost 76% and 57% during 2021-2030 and 2041-

2050, respectively with respect to the period 1997-2006. 

Keywords: modelling; suspended sediment; artificial intelligence; prediction; risk analysis  

1 Introduction 

Estimating and predicting suspended sediment load (SSL) in rivers is of particular interest in management 

of water resources, as the estimated load is commonly needed in wide spectrum fields of water resources 

engineering such as planning of reservoirs, watershed management, and ecological assessment etc. The 

traditional calculation of sediment yield is by relating sediment concentration to river flow values through 

a nonlinear relationship. Hence, a few sediment data could be extrapolated up to the length of the 

discharge records (Cigizoglu and Kisi 2006). Given the high intricacy, dynamism, and non-stationarity of 
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suspended sediment loads; the artificial intelligence (AI) methods have demonstrated the ability to 

overcome these inherent dilemmas (Afan et al. 2016).   

Adaptive Neuro Fuzzy Inference System (ANFIS) has been one of the superior techniques used in 

water resources field (Rajaee et al. 2009; Maiti and Tiwari 2014; Kisi and Zounemat-Kermani 2016; and 

may others). ANFIS, which is a fuzzy inference system implemented in the frame of adaptive networks 

using a hybrid learning procedure, can be constructed to mapping input-output relationship based on both 

human knowledge and stipulated input-output data pairs (Jang 1993). ANFIS has been used in many 

environmental and hydrological related problems ( El-Shafie et al. 2007; Afan et al. 2016). However, few 

studies used ANFIS to model the suspended load- river discharge nonlinear- relationship. This 

relationship is of great importance to be addressed, because mostly the suspended loads are measured 

instantaneously along with discharges. Besides that, developing a predictive model of sediment transport 

based on minimal input is essential and necessary. 

The artificial neural network (ANN) approach as a non-linear black box model would seem 

typically a useful technique for modelling a complex relation between dependent and independent 

variables. Many successful applications of the ANNs in the field of water resources have been reported in 

the literature such as the rainfall runoff relationship (Mason et al. 1996; Minns and Hall 1996; Fernando 

and Jayawardena 1998), river flow prediction (Tokar and Johnson 1999; Cigizoglu 2005; Kisi and 

Cigizoglu 2007; Chen et al. 2015), rainfall estimation ( Luk et al. 2000; Luk et al. 2001; Ramírez et al. 

2005), groundwater (Daliakopoulos et al. 2005; Lallahem et al. 2005), and water quality (Wen and Lee 

1998; Palani et al. 2008; Rai and Mathur 2008; Singh et al. 2009). The application of ANNs to SSL data 

has been recently increased (Jain 2001; Nagy et al. 2002; Tayfur 2002) and many others. For example, 

Alp and Cigizoglu (2007) used the feed-forward back-propagation (FFBP) method and the radial basis 

functions (RB) to estimate the daily total SSL. They trained neural networks using different hydro 

meteorological data from the Juniata Catchment, USA. They concluded that the ANNs provided 

satisfactory simulations in terms of the selected performance criteria and comparable to the conventional 

multi-linear regression against the observed data. Rajaee et al. (2009) evalauted feedforward, neuro-fuzzy 

(NF), multi linear regression (MLR) and conventional sediment rating curve (SRC) models. They 

demonstrated that ANN could improve the accuracy of modelled suspended sediment over the MLR and 

SRC. However, Most of the previous studies of the ANNs focused on using feedforward or radial basis 

neural networks to model suspended sediment. As a result, this study investigates a wider spectrum of the 

available ANNs methods. Moreover, none of the aforementioned methods has attained universal 
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acceptance for SSL prediction. Therefore, an accurate modelling of the river SSL, based on local data, is 

essential to improve the prediction of suspended sediment. Consequently, this prediction could serve as a 

tool for better water management in terms of risk analysis. The ultimate objective of this study is to 

approximate future SSL in the upper reach of the Spree River in Germany using a novel method. To 

achieve that, in the first part, the aim was to investigate the capability and accuracy of AI methods to 

model SSL in the study area using the streamflow discharge as input. To this end, results from ANFIS, 

ANNs (including feedforward, cascade feedforward, pattern recognition, radial basis, generalized 

regression and layer recurrent) and sediment-rating curve were compared. The evaluated methods were 

selected to insure involving the various types of ANNs i.e. static, statistical, and dynamical networks. 

Thereafter, the best structure of AI was used to estimate the seasonal and yearly amounts of SSL over the 

period 1994-2010. In the second part, the Soil and Water Assessment Tool (SWAT) and the best-

evaluated method from the AI models were integrated to model the impacts of climate changes on 

suspended load in the study area. To this end, the SWAT model was calibrated and validated against daily 

streamflow for a rather long term period (1997-2010). Consequently, future streamflow were projected 

through re-running the calibrated SWAT model with the future climate data from the regional climate 

change model (CLM) under SRES-A1B scenario. Finally, the future discharges were fed as inputs to the 

best-evaluated method of the AI models to estimate the suspended sediment concentration during two near 

future periods (2021-2030 and 2041-2050). 

2 Study area and data 

The upper reach of the Spree River is a 310-km
2
 catchment located at the eastern part of Germany 

between 14° 36ʹ 32ʹʹ and 14° 26ʹ 24ʹʹ longitude and 51° 14ʹ 3ʹʹ and 50° 58ʹ 9ʹʹ latitude. The catchment 

stretches from the Czech Republic border in the south to the Bautzen reservoir in the North West. The 

range of the watershed topography is from 154 to 563 m above mean sea level and slopes from 0% to 

30.2%. The average annual precipitation is about 730 mm, mainly falls in the form of rainstorms from 

May to September (maximum in July and August) (Al-Mukhtar 2016). The collected data in this study 

were streamflow (m
3
/sec) with its corresponding SSL (mg/l) measured instantaneously on discrete 

intervals (with at best one measurement per month) for the Spree River at the Bautzen gauge for the 

period 1993-2011. In total 270 values of both discharge and suspended sediment were available. These 

values were obtained from the water quality management of national reservoir management of Saxony.  
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3 Methods for modelling suspended sediment concentration 

Because the streamflow and suspended sediment concentrations are not typically measured simultaneously 

and continuously, it is of great importance in water management to find a reliable estimator of SSL. Using 

the raw data (streamflow and suspended sediment concentration, (SSC)), two data sets were derived: one 

for model training and the other for model validation. 75% of the data employed for model training and 

the remainder 25% for the model validation. Table 1 shows the descriptive statistics of suspended 

sediment concentration during both training and validation periods. The sediment series has a quite high 

variability (STD=113.74), positive skew (Csx=7.51), and mean value of 36.0 mg/l. For the entire period, 

the first quartile of suspended sediment was equal to 7 mg/l, the third quartile was 19 mg/l, and the median 

was 10 mg/l. Given that the mean for the entire period is 36.0 mg/l, the highest flow of 1300 mg/l is more 

deviant from the mean than the lowest flow of 1 mg/l. Therefore, it was considered as an outlier and 

eliminated (McCuen 2002). Once the training process was completed, the performance of the trained 

network was validated subsequently against known independent values to assess the generalization ability 

using the chosen criteria (Dawson and Wilby 2001). The performance of the methods is satisfactorily 

accepted when they reveal satisfactory results of the assessment criteria during both the training and 

validation. All the computations were done with the use of MATLAB software (R2008a), ANFIS, 

artificial neural network modelling, and the regression analysis. The following section describes the 

methods of suspended sediment modelling used in this study. 

Table 1 Descriptive statistics of suspended sediment concentration mg/l 

  Min Max Mean  Median STD Csx 

Calibration  1 1300 30.8 10 110.50 8.77 

Validation 1 860 50.91 16 122.12 4.87 

 

3.1 Adaptive neuro fuzzy inference system (ANFIS) 

ANFIS is a special type of ANNs that integrates both neural networks and fuzzy logic principles (Jang 

1993). It is considered an universal approximation system because it has the capability of approximating 

any real continuous function on a compact set of data to any degree of accuracy using mostly either 

Takagi–Sugeno or Mamdani fuzzy inference system (if-then rule) (Jang et al. 1997). Takagi and Sugeno’s 

fuzzy if-then rules are characterized as the output of each rule is a linear combination of the input 

55



Mustafa Al-Mukhtar         Integrated approach to forecast future suspended sediment load (SWAT and AI)  
  

 
 
 

 

variables plus a constant term, and the final output is the weighted average of each rule’s output (Jang 

1993). A hybrid-learning rule, which is a combination of the gradient method and the least squares 

estimate, which is employed to identify parameters pertaining membership function (MF), was adopted to 

be used in ANFIS because it is faster and not trapped by local minima as in the basic rule. As a typical 

example, it is assumed a fuzzy inference system with two input variables (x and y) and one output f. The 

first-order Sugeno’s fuzzy model, a typical rule set with two fuzzy If-Then rules can be written as: 

Rule 1: If x is A1 and y is B1;  then f1 = p1x + q1y +  r1                                               1 

Rule 2: If x is A2 and y is B2;  then f2 =  p2x +  q2y +  r2                                              2 

p1, q1, r1 and p2, q2, r2 are the parameters in the then-part (consequent part) of the first-order Sugeno fuzzy 

model. The general structure of ANFIS is shown in Figure 1. A comprehensive details about ANFIS 

functioning can be found in Jang (1993). In this study, each run with different numbers of member 

functions (MF) was tried and the one that gave the minimum squared error was selected. Triangular-

shaped built-in MFs for the ANFIS models were found to be efficient for modelling SSL in the upper 

reach of the Spree River.  

 

Figure 1 (a) Sugeno's fuzzy reasoning mechanism (b) equivalent ANFIS structure (adopted from Jang 

1993)   
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3.2 Artificial neural network models 

Artificial neural network is one of the most robust tools used in modelling the nonlinear relationships 

between inputs and targets. Researches on the brain and nervous systems in living organisms were behind 

the inspiration of its computational approach (Luk et al. 2001). The robust functionality of a biological 

neural system is due to the parallel-distributed processing nature of a network of cells (neurons). Hence, 

an ANN mimics this structure by distributing the computation to processing units, called artificial 

neurons, or nodes. Through the interaction of these neurons, the ANN can be used to complete 

information processing of the network (Feng and Lu 2010). Therefore, an ANN has proven to be a 

powerful mathematical model, that have the advantages of self-learning, self-organizing, and self-adapting 

(Feng and Hong 2008; ASCE Task Committee on Application of Artificial Neural Networks 2000b). The 

individual ANNs used in the modelling of suspended sediment concentration are described briefly in the 

following sections, more detailed can be found in Beale et al. (2012). 

3.2.1 Feedforward neural network  

Feedforward neural network (FF) is a multi-layer perceptron type where nodes in one layer are only 

connected to nodes in the next layer, it has been used for prediction and forecasting applications (Maier 

and Dandy 2000). Typically, feedforward networks have one or more hidden layers of sigmoid transfer 

function followed by an output layer of linear transfer function. Nonlinear transfer functions in multiple 

layers of neurons allow the network to learn nonlinear and linear relationships between input and output 

vectors. The linear output layer makes the network to produce values outside the range -1 to +1 (Beale et 

al. 2012). A supervised learning technique called backpropagation is used to train the network. The 

backpropagation computation is derived using the chain rule of calculus (Hagan et al. 1996). The default 

algorithm used in optimizing weights between connections is Levenberg-Marquardt backpropagation 

(Hagan et al. 1996).  

3.2.2 Cascade feedforward neural network 

Cascade feedforward neural network (CFF) has a similar configuration of feedforward, except that it 

includes a connection from the input and every previous layer to the following layers (Beale et al. 2012). 

In addition, the transfer function used in output layer is a hyperbolic tangent sigmoid transfer function 

instead of linear function in a feedforward network.  
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3.2.3 Pattern recognition neural network 

The pattern recognition neural network (PR) is also derived from the feedforward network, but it is trained 

to classify inputs according to target classes (Beale et al. 2012; Dumedah et al. 2014). Moreover, a 

hyperbolic tangent sigmoid transfer function is used in both hidden and output layers. Thus, the 

classification output will range between -1 and 1, giving wider categories of outputs. 

3.2.4 Radial basis neural network 

Radial basis networks (RB) typically have three layers: an input layer, hidden layer with non-linear radial 

basis function (RBF), and linear output layer. The RBF estimates the output by using the standard 

Euclidean distance between the inputs and its corresponding weight (ASCE Task Committee on 

Application of Artificial Neural Networks, 2000a; Beale et al. 2012). In other words, for each node the 

Euclidean distance between the centre and the input vector is estimated, and then transformed by a non-

linear function (Exponential) that determines the output from the hidden layers. The radial basis function 

has a maximum of 1 when its input is 0. When the distance between the weight (w) and input 

(p) decreases, the output increases. Thus, a radial basis neuron acts as a detector that produces 1 whenever 

the input p is identical to its weight vector w. 

3.2.5 Layer recurrent neural network 

The layer recurrent (LR) (also known as Elman neural network) is a dynamic type of neural networks 

(Elman 1990). Although it has three-layers as in feedforward type, this type is characterized by feedback 

loop having a single delay in every layer except the output layer. In other words, input neurons are linked 

to a hidden neuron, where each hidden neuron has its corresponding time-delay unit. Its output depends on 

the current input information and on the previous states of the network. The same algorithm of FF (i.e. 

Levenberg–Marquardt back propagation) is used to train the Elman neural network. The sigmoid and 

linear transfer functions are used in hidden and output layers, respectively. 

3.2.6 Generalized regression neural network 

The generalized regression network (GR) has a similar configuration as the radial basis network: it sets the 

radial basis function in the first layer, but with slightly different second layer (Beale et al. 2012). The GR 

neural network consists of four layers: input layer, pattern layer, summation layer and output layer. It uses 

net input functions in the second layer that calculates a layer's net input by combining its weighted inputs 
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and biases. Moreover, the number of nodes can be as many neurons as the inputs. The GR network is used 

for estimation of continuous variables, as in standard regression techniques. It is related to the radial basis 

function network and is based on a standard statistical technique called kernel regression.  

The optimal number of neurons in the hidden layer of feedforward type network was determined 

using trial and error procedure. The range of tested neurons number was in the range 5 to 20. 

Subsequently, the optimal number of neurons and its trained network were used to model the suspended 

sediment concentrations for validation period with their known values. To ensure that all inputs and 

targets of the neural networks are on the same scale and thus accelerate convergence, a standardization 

(Equation 3) was performed on the assumption that the data always fall within a specified range (i.e., in 

the interval [-1, 1]). 

𝐲 = (𝐲𝒎𝒂𝒙 − 𝐲𝒎𝒊𝒏) ×
𝐱−𝒙𝒎𝒊𝒏

𝒙𝒎𝒂𝒙−𝒙𝒎𝒊𝒏
+ 𝐲𝒎𝒊𝒏                                                                      3 

 

Where: y is the target and x is the input. 𝑚𝑎𝑥 and 𝑚𝑖𝑛 are maximum and minimum values, respectively.  

3.2.7 Conventional regression 

Conventional regression methods are fitted to data either by linear or non-linear least square regression. 

One of the most commonly used method in estimating suspended sediment concentration is the sediment-

rating curve (SRC). The resulting rating curve is defined as an empirical relationship between streamflow 

and concentration. The most common regression equation is the log-log linear rating curve (Quilbé et al. 

2006): 

𝐥𝐨𝐠𝟏𝟎 𝑺 = 𝒂 + 𝒃 𝐥𝐨𝐠𝟏𝟎 𝑸                                                                                                    4 

S is the suspended sediment concentration in mg/l or ppm; Q is the river flow m
3
/s, a and b are constants. 

  

4 Methodology for predicting future streamflow 

In order to predict the impact of climate changes on SSL in the study area, it is essentially to obtain the 

projected future streamflow during the two evaluated periods (2021-2030 and 2041-2050). To this end, the 

period 1997-2006 was employed to calibrate the SWAT model and the period 2007-2010 for validation 

using daily stream flow at the watershed outlet. Sequential uncertainty fitting (SUFI-2) (Abbaspour et al. 

2004, 2007) was used for calibration, validation, uncertainty assessment in the model outputs. Then, the 
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calibrated model was re-run with the future climate data from the CLM model under the SRES-A1B 

scenario. Hence, future discharges for the two evaluated periods (2021-2030 and 2041-2050) were 

obtained. These discharges were used further as inputs to the best structure of the AI models to estimate 

the future suspended load. Daily precipitation, daily maximum and minimum temperature were used as 

input to SWAT from the future climate model under the SRES A1B scenario to predict the impact of 

future climate change on streamflow. The built-in weather generator of SWAT was applied to predict the 

other meteorological data. The regional climate model (CLM model) was downscaled from the global 

circulation model ECHAM + MPI-OM (Roeckner et al. 2003, 2006). The CLM model encompasses of 

two realizations: CLM-1 and CLM-2. In this study, only the CLM-1 was used to predict the impact of 

climate change as it show the highest values of discharges and precipitation among the others realizations 

(Al-Mukhtar et al. 2014). Hence, it represents the worst scenario for sediment amounts prediction. The 

precipitation bias in CLM climate data was corrected by calculating a multiplicative scaling of average 

monthly precipitation between the observations and the CLM model for the period 1991–2010. Then, this 

scale was applied to approximate climate data of the CLM model. 

5 Soil and Water Assessment Tool (SWAT) setup 

The ArcSWAT interface for SWAT 2009 (Winchell et al. 2010) was used to set up the hydrological 

model. To this end, a 50 m SRTM digital elevation model, soil and a land use layers from the Saxon State 

Office for Environment were used to build the model. The study area was then discretized into twenty-

nine sub-catchments using the default threshold channel area of 6.13 km
2
. Subsequently, 342 hydraulic 

response units (HRU’s) for the entire catchment were created. The source of the meteorological data 

(precipitation, max. and min. temperature, relative humidity, solar radiation, and wind speed) were from 

the Regional Climate Information System for Saxony, Saxony-Anhalt and Thuringia website (ReKIS). 

The daily stream flow and suspended sediment data were obtained for the outlet catchment gauge from the 

Water Quality Management of National Reservoir Management database of Saxony. The calibration 

(1997-2006) and validation (2007-2010) periods of the SWAT model were optimized before assessing the 

impact of climate change on the streamflow. A spin-up period of two years (1995–1996) was used just to 

initiate the hydrological parameters of the watershed and was not included in the results. With respect to 

applying the calibration procedure, SUFI-2 was used to generate 1000 parameter combinations for each 

iteration from the assigned range of each parameter. Thereafter, SUFI-2 was run and the goodness of fit 

and uncertainty measures were calculated, and hence new parameter ranges were set. The best parameters 

ranges were determined at the optimal objective function after six iterations (6000 runs).  
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6 Evaluation criteria of AI models performance 

Two most widely used criteria were applied in order to assess the goodness of fit between observed and 

modelled data, which are: 

1. Determination coefficient (R
2
): the determination coefficient (equation 5) describes the proportion 

of the variance in observed data explained by the model. Its values range from 0 to 1. Higher 

values indicate less error variance and typically values greater than 0.5 are considered acceptable 

(Santhi et al. 2002; Van Liew et al. 2003; Moriasi et al. 2007). 

𝐑𝟐 = [
∑ (𝐎𝐢−𝐎̅)(𝐏𝐢−𝐏̅)𝐧

𝐢=𝟏

√∑ (𝐎𝐢−𝐎̅)𝟐𝐧
𝐢=𝟏   √∑ (𝐏𝐢−𝐏̅)𝟐𝐧

𝐢=𝟏

]

𝟐

                                                                                        5 

Where Oi is the actual value, O̅ is the average actual value, Pi is the predicted value, and P̅ is the average 

predicted value. 

2. Root mean square error (RMSE): root mean square error (equation 6) is one of the error indices 

commonly used in model evaluation. The closer value to zero, the better model performance. 

𝐑𝐌𝐒𝐄 = √
∑ (𝐎𝒊−𝐏)𝟐𝐧

𝐢=𝟏

𝐧
                                                                                                                  6 

7 Results and discussion 

7.1 Evaluation of suspended sediment modelling methods 

The evaluation of the AI methods was performed on two stages; calibration or training, and validation. 

The validation set is used to evaluate the model against independent data. The best model was determined 

based on its performance during both the calibration and validation stages. The scatter plots of the 

observed and modelled SSC with the evaluated AI methods during calibration and validation periods were 

depicted along with the 1:1 line in Figures 2, 4, and 5. The values of performance criteria based on R
2
 and 

RMSE for the evaluated methods were listed in Table 2. The determination coefficient of a value > 0.5 

was pointed as a satisfactory for suspended sediment modelling (Quilbé et al. 2006). According to Table 2 

and based on the training data set, ANFIS configuration provided the best efficiency of modelling SSC 

with R
2
 of 0.72 and RMSE of 33.74 mg/l. Moreover, Figure 2a shows the scatter plot between observed 
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and modelled suspended load from ANFIS during calibration. It can be seen from Figure 2a that the points 

were closely distributed along the 1:1 line except the high amounts of SSL, where they were 

underestimated. Figure 3a shows the observed and modelled data from ANFIS. It can be seen, that the 

observed peak values were consistent with those from ANFIS. The reason behind superior positive results 

from ANFIS might be attributed to its structure and the capability of eliminating the noisy data (Rajaee et 

al. 2009).  On the other side, all the ANNs have an overall R
2
 greater than 0.5 and RMSE less than 100 

mg/l. The descending order of the ANN methods during the training was radial basis, pattern recognition, 

cascade feedforward, layer recurrent, feedforward, and generalized regression (Table 2). The scatter plots 

between the observed and modelled SSL for the FF, CFF, PR, LR, GR, and SRC were plotted as shown in 

Figures 4a, b, c, d, e, and f, respectively. It can be noticed from those above figures that the high amounts 

of SSL were consistently underestimated. This could be attributed to the complex non-linear relationship 

governing sediment transport process. While, for low and medium values, the scattered points are 

distributed uniformly around the line 45°. However, the generalized regression neural network has the 

worst performing among the remaining ANN methods during the training period with R
2
 and RMSE equal 

to 0.60 and 61.11 mg/l, respectively. This could be attributed to the fact that the GRNN uses standard 

statistical regression that is minimizing the mean square error between the observed and modelled SSL. 

Using the statistical regression analysis, the sediment-rating curve or the conventional regression was able 

to predict only 60% from the variability in the observed data with RMSE of 40.53 mg/l. In overall, the 

performance of the evaluated methods during the training period show that the ANFIS and the artificial 

neural networks have the highest estimation accuracy and thus they can be further used to model the 

suspended sediment concentration using independent data set during the validation period.  

During the validation procedure, the known SSC records and the modelled values from the 

evaluated methods were compared. The scatter plot between observed and modelled values from ANFIS 

during the validation is shown in Figure 2b. Besides, Figure 3b shows the observed versus modelled SSL 

from ANFIS. It can be seen from those figures that ANFIS was capable to nicely predict the SSC values 

during the validation period. R
2
 and RMSE of the modelling results with ANFIS were equal to 0.60 and 

87.41 mg/l, respectively. The higher performance of ANFIS could be attributed to its structure that 

achieved a smaller convergence error. In other words, it not only uses the advantage of the simplifying 

function of fuzzy reasoning, but also uses the self-learning ability of neural networks with the strong 

capability of eliminating noise (Rajaee et al. 2009). The remainder ANN’s and the conventional regression 

performed poorly despite they have a value of R
2
 greater than 0.50 but higher RMSE values than ANFIS 
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(Table 2). Figures 5a, b, c, d, e, f show the scatter plots of observed and modelled SSL from the FF, CFF, 

PR, LR, GR, and SRC, respectively. The performances of these methods were inconsistent due to the 

different algorithms used. For the feedforward methods, the descending order of performance based on 

RMSE is CFF, PR, and FF. These methods use the same transfer function for the hidden layer (linear) but 

different transfer function for the output layer. PR uses the hyperbolic tangent sigmoid as transfer function 

in the output layer which could be better suited for modelling SSL than the linear transfer function. The 

dynamic neural network type (LRNN) has rather higher estimation accuracy with R
2
 and RMSE of 0.51 

and 142.02, respectively. Dumedah et al. (2014) pointed out that the higher estimation accuracy of the 

recurrent layer network might be attributed to its evaluation of the feedback between layers through 

discrete time non-linear estimation. 

With respect to the radial basis methods, i.e. RB and GRNN, the latter has higher estimation 

accuracy than RB. In overall, regression based neural network is preferred on the other networks in 

modelling SSL. In their study, Cigizoglu and Alp (2006) pointed out that “the GRNN performances were 

quite satisfactory providing close or sometimes even superior performances compared with FF in sediment 

estimation in terms of the selected performance criteria” and hence eliminates the negative value, which 

are physically unexplainable as in the FFBP applications. However, GRNN in this study was unable to 

capture the behaviour of suspended sediment during the validation period.   

It is well known that the ANNs models are unable to extrapolate beyond the range of the data used 

for training (Flood and Kartam 1994; Minns and Hall 1996). Additionally, when the validation data 

contain values outside the range of those used for training; poor predictions can be expected. In other 

words, it is necessary that the training and validation sets are representative of the same population. 

Moreover, it is noteworthy that the ANNs are highly dependent on the amount of trained data to generate 

prediction. These drawbacks might represent the limitation of using ANNs in prediction procedure and 

could explain the unsatisfactory performance of the ANN’s in this study.  

On the other side, traditional SRCs performed inadequately (R
2
 <0.5 and RMSE 88.50) due to the 

over-simplification of relating suspended sediment concentration solely to discharge. Instead, the 

multitude of acting processes required more flexibility to model these nonlinear relationships. In previous 

study, Shiau and Chen (2015) pointed out that “the sediment rating curve is insufficient to describe the 

inevitable scatter between sediment and discharge”. However, this study shows that the ANFIS 

outperformed the traditional sediment-rating curve, the static, dynamic and statistical artificial neural 
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networks to modelling suspended sediment load. This study proved that ANFIS has the priority, in 

preference to the other evaluated methods, to be used as predictor of the suspended sediment 

concentration using the streamflow discharge as independent value. 

Table 2 performance criteria of the evaluated methods 

  Training   Validation 

Modelling methods R
2
 RMSE 

 

R
2
 RMSE 

ANFIS 0.72 33.74   0.60 87.41 

feedforward  neural network  0.68 36.27 

 

0.62 166.44 

cascade forward  neural network  0.71 34.09 

 

0.51 121.31 

pattern recognition  neural network  0.71 33.99 

 

0.57 132.24 

radial basis  neural network  0.90 33.55 

 

0.61 4.70E+04 

layer recurrent network 0.71 34.90  0.51 142.02 

generalized regression neural network  0.60 61.11 

 

0.30 118.52 

conventional regression 0.60 40.53 

 

0.48 88.50 

 

a)

 

b)

 

 

Figure 2 Comparison of observed and modelled suspended sediment from ANFIS in the a) training period 

b) validation period 
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a)

 

b)

 

 

Figure 3 Observed versus modelled suspended sediment load from ANFIS during a) training b) validation 

periods 
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a) 

 

b) 

 

c) 

 

d) 

 

e) 

 

f) 

 

Figure 4 Comparison of observed and modelled suspended sediment in the training period from a) FF b) 

CFF c) PR d) LR e) GR f) SRC 
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a) 

 

b) 

 
c) 

 

d) 

 
e) 

 

f) 

 
 

Figure 5 Comparison of observed and modelled suspended sediment in the validation period from a) FF b) 

CFF c) PR d) LR e) GR f) SRC 
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7.2 Estimating of suspended sediment load 

In this study, the best structure of ANFIS was used to estimate the missing values of the SSL using the 

daily streamflow values of the study area from 1994 to 2010. The daily values of SSL (mg/l) were 

converted to ton/ha/yr using their corresponding streamflow discharges values and the catchment’s area. 

Fig. 6 shows the temporal variation of the monthly-modelled SSL over the period 1993-2010 with the help 

of a box-whisker plot. The box-whisker plot pointed to the presence of many outliers, which implies that 

the SSL (ton/ha/yr) of some seasons is higher than those in others. This discrepancy was most likely due 

to other sources of point and non-point pollution because the catchment is characterized as a highly 

anthropogenic influenced area due to open pit mining. Fig. 7 shows the seasonal loads of suspended 

sediment over the period 1997-2006. The seasonal results confirm that in this region soil erosion was 

essentially a springtime process (March, April, and May) in most years (with value as high as 2.5 ton/ha) 

except a prominent summer process (Jun, July, and August) in 2010 (3.6 ton/ha). The higher value of 

suspended load during summer 2010 was most likely due to the high streamflow discharges that were 

recorded during this year (flood flow). Fig. 8 shows the yearly SSL over the period 1997-2006. These ten 

years were further used as a baseline period to investigate the deviation of future period’s loads (2021-

2030 and 2041-2050). Loads were varied from year to year. However, the yearly load ranges from 0.82 

ton/ha in 2007 which was recorded as dry year to 17.25 ton/ha in 2010. Suspended sediment yield is 

expected to increase/decrease over the years depending on the major factors controlling sediment transport 

capacity i.e. streamflow and rainfall.  

 

Figure 6 Temporal variation of suspended sediment load ton/ha/yr over period 1993-2010 (1 to 18) 
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Figure 7 Seasonal in-stream loads of sediments from the upper reach of the Spree River watershed. DJF: 

December, January, February; MAM: March, April, May; JJA: June, July, August; SON: September, 

October, November 

 

Figure 8 Yearly loads of suspended sediment as calculated from ANFIS in the upper reach of the Spree 

River 

7.3 Swat calibration and validation 

Two objective functions were used to assess the performance of SWAT model: R
2
 and Nash and Sutcliffe 

coefficient efficiency (ENC). In addition, the P factor (the percentage of measured data surrounded by the 

95% prediction uncertainty (95PPU)) and R factor (which is the average thickness of the 95PPU divided 

by the standard deviation of the measurements) were used to assess the simulation uncertainty. Figures 9 

and 10 show the daily observed versus modelled streamflow from the SWAT model during the calibration 

and validation, respectively. SWAT underestimated the peak values along the two periods. This might be 

attributed to the assumption that the water percolates into deep aquifer is excluded from the simulation 
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process. However, during the calibration period (1997–2006), R
2
 was 0.53 and the ENC coefficient is 

0.53. During the validation period (2007–2010); the R
2
 coefficient was 0.57 and the ENC coefficient is 

0.54. SWAT shows a satisfactory performance in simulating daily stream flow in the upper reach of the 

Spree River, P factor and R factor were equal to 54 % and 36%, respectively during the calibration. 

During the validation, the P factor decreased to 40 % and the R factor to 31 %. However, the positive 

results during calibration and validation proved the reliability of the SWAT model to be used in further 

analysis i.e. predicting the impacts of climate changes on river flow.  

 

Figure 9 Observed versus modelled daily streamflow from SWAT during the calibration (1997-2006) 

 

Figure 10 Observed versus modelled daily streamflow from SWAT during the validation (2007-2010) 
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7.4 Impact of climate change on suspended sediment 

Figure 11 shows the relative change in seasonal suspended load during 2021-2030 and 2041-2050 in the 

study area. As it can be seen from Figure 11, the maximum reduction might occur in winter seasons 

(December-January-February) during 2021-2030 with 84.25%. A maximum reduction in period 2041-

2050 was estimated to occur in spring season (March-April-May) with 75.60%. This decrease in sediment 

load corresponds to the prospective decrease in streamflow during the above periods that the catchment 

might undergo (Al-Mukhtar et al. 2014). Obviously, the effects of climate change are remarkable on the 

seasonal phases; which suggest that the seasonal climate variations are considerable in affecting future 

suspended sediment yield. The reduction in sediment load undoubtedly will have benefits in terms of 

pollutants transport, such as phosphorus and nutrients, because the transfer of phosphorus and metals from 

soils to surface waters is greatly affected by suspended sediment load. On the contrary, an increase in 

sediment load was projected in summer season (Jun-July-August) during 2041-2050 of 25%. This is 

attributed to the potential flood events that might occur. In other words, 50% of the annual precipitation 

occurs during the summer season in this area. Figure 12 shows the seasonal sediment load over period 

2021-2030. It can be noticed from Figure 12 that the maximum sediment load was forecasted during 

March-April-May in 2026 and 2030 of values 0.49 and 0.56 ton/ha, respectively, which in turn interpreted 

the maximum yearly sediment load in these two years. During the period 2041-2050, the higher value of 

seasonal suspended load was forecasted to be 1 ton/ha in December-January-February in 2043 and 2046 as 

shown in Figure 13. A higher yearly value was forecasted with 2.8 ton/ha in 2046. An increase in future 

winter temperature (as predicted from A1B realization) effects on snowmelt in this region and ultimately 

on soil erosion, hence could explain why the higher values are projected in winter season. However, 

obviously, the impacts of climate changes will be more mitigated in 2041-2051 than in 2021-2030, which 

in turn might be attributed to the type of greenhouse emission scenario used in this evaluation. The overall 

relative change in yearly sediment load to the reservoir with respect to the baseline period (1997-2006) 

was projected to be 76% during 2021-2030 and 57% during 2041-2050. However, the results of this study 

should be cautiously considered due to the inherent uncertainties in evaluating climate change impacts on 

sediment yield, i.e., emission scenarios, global climatic projections, and model simulations. 
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Figure 11 Relative changes in seasonal sediment yield for 2021-2030 and 2041-2050 

 

Figure 12 Seasonal sediment loads for 2021-2030 

 

Figure 13 Seasonal sediment loads for 2041-2050 
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8 Conclusion  

A novel methodology was used to assess the consequences of climate changes on SSL in the upper reach 

of the Spree River in Germany. Data from the Spree River in Germany was employed for this purpose. At 

first, the study evaluated and compared ANFIS, artificial neural networks and statistical regression 

analysis (SRC), to identify the optimal method that is capable to model the dependent suspended sediment 

concentration using streamflow as independent variable. Subsequently, the optimal AI structure was 

employed to estimate future SSL using estimated future discharges obtained from an integration of SWAT 

with a regional climate change model.  

 A comparison of the modeled suspended sediment concentration values with known records 

showed that the top performing method was the ANFIS. Thus, the ANFIS model has the priority in 

preference to the others neural network methods to be used as predictor of suspended sediment load in this 

area. The highest estimation accuracy of the ANFIS could be attributed to the non-linear characteristics, 

which can help in detecting and capturing non-linear features of SSL phenomenon (Kisi et al. 2009). On 

the opposite side, it is clear that the LR, FF, CFF, PR, RB, GR were not able to capture the behaviour of 

the observed sediment load series as accurate as the ANFIS. Rajaee et al. (2009) pointed out that “in 

contrast to regression-based models, intelligence-based models use the advantage of multiple adjustable 

parameters and configurations; therefore, they are prone to problems of over fitting”. However, results of 

this study prove the potential ability of ANFIS to model the complex nonlinear dynamic relationship such 

as that between discharge and suspended sediment load. Moreover, the findings from this study highlight 

the potentiality of this method to model other complex hydrologic relationships. It was found that the 

suspended sediment loads in the upper reach of the Spree River are greatly affected by outliers; suggesting 

that this area necessitates more frequent monitoring in terms of pollutants concentrations. It was also 

concluded that the amounts of suspended load are varied over the years with maximum load in 2010 and 

minimum in 2007. Moreover, it was concluded that the area might witness reduction in sediment load to 

Bautzen reservoir in the near future due to the impact of climate changes. This study could be of use to 

provide a better insight for stakeholders about the amounts of sediment load in this region. Hence, a better 

vision on risk analysis. 
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