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II   Abstract 

With a size of ~10,000 km² the Salar de Uyuni is the largest salt lake in the world. It is located 

at a height of 3,653 m a.s.l. in the southern part of the Bolivian Altiplano, an endorheic high 

plateau separating the Eastern and Western cordillera of the Andes. The salt flat is 

characterized by an alternating sequence of evaporate layers mainly consisting of halite and 

lacustrine mud layers up to a depth of at least 220 m, whereby the stratification is ascribed to 

the alternation of dry and humid climatic phases during the Quaternary. With estimated 7 Mio 

tonnes in brine, the salt lake is considered the world’s largest Li deposit. Knowledge about 

genesis and distribution of Li is essential for the possible extraction of Li and other valuable 

elements from the brine in a commercial scale, which is the driving force for the investigation 

of hydrochemical properties of the Salar de Uyuni.  

Practical work comprised the sampling of brines from drilled wells and along transects, salts 

from the surface, sampling of streams, rocks and sediments in the catchment, as well as 

chemical and isotopical analyses. The surface catchment, delineated with ArcGIS, has a size 

of 63,000 km² and is mainly characterized by volcanic deposits as ignimbrites, and 

unconsolidated sediments, salt deposits and lacustrine material in widespread flood plains. 

The pores of the upper salt crust, which shows a varying thickness of 2-11 m, are filled with a 

saturated NaCl brine rich in Mg, K, Li and B. The distribution of Li along the salt lake is 

inhomogeneous, with two regions of significantly higher concentrations up to 1.5 g/L in the 

southern part near the delta of the main inflow Río Grande and in the northern part, compared 

to an average of 0.3-0.4 g/L in brine.  

The age of brines from the upper salt crust was determined to 6,200 - 13,340 years, 

corresponding in age to the surrounding evaporates and showing a stable stratification with 

depth. However, a local mixing of the brine with freshwater feeding from groundwater aquifers 

especially near the shore of the salar was observed by the analysis of δ2H and δ18O in the 

brines. The distribution of stable isotopes also shows the strong influence of evaporation, even 

smaller tributaries feeding the Río Grande are enriched in heavy isotopes of H and O. Element 

to bromine ratios in the brine showed that Li, K and Mg are not removed from solution by the 

formation of precipitates, but are rather released from clay minerals by ion exchange leading 

to their enrichment in the pore brine.  

Analyzed rocks, mostly of rhyolitic and dacitic type, show moderate lithium concentrations in 

the range of 4 to 37 mg/kg. Different types of digestion revealed that rock types occurring in 

the Salar de Uyuni catchment are a substantial supplier of lithium by the intensive physical and 

chemical weathering due to the specific environmental conditions. Increased lithium 

concentrations in rock and sediment samples from the volcano flanks south of the salar 
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indicate, that the southern catchment is the main supplier of lithium to the salt lake. The 

enrichment of lithium could also be observed by the analysis of superficial salts from the upper 

crust. Salt efflorescences are significantly enriched regarding Li, K, Mg and other ions 

compared to the surface within the polygons. The enrichment of Li in brine occurs all-season 

along shrinkage cracks at polygon borders, where brine rises up, water evaporates and NaCl 

precipitates, leaving a solution even more concentrated in Li and other solutes as Br, B, K and 

Mg. 

In conclusion, the accumulation of lithium in the brine of the Salar de Uyuni results from the 

combination of various site-specific circumstances, which are analyzed and discussed in the 

present thesis.  
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III   Zusammenfassung 

Mit einer Größe von ~10.000 km² ist der Salar de Uyuni der größte Salzsee der Welt. Er 

befindet sich auf einer Höhe von 3.653 m im Süden des bolivianischen Altiplano, einer 

abflusslosen Hochebene zwischen der Ost- und Westkordillere der Anden. Der Salzsee 

besteht bis zu einer Tiefe von mind. 220 m aus einer Wechselfolge evaporitischer Schichten 

(hauptsächlich halitisch) und lakustrinen Tonschichten, wobei die Schichtung auf den Wechsel 

von trockenen und feuchten klimatischen Phasen während des Quartärs zurückzuführen ist. 

Mit einer geschätzten Menge von 7 Mio. t gilt der Salzsee als die gegenwärtig größte Li-

Ressource der Welt. Das Wissen über Genese und Verteilung von Li ist grundlegend für eine 

mögliche Gewinnung von Li und anderen Elementen in kommerziellem Maßstab, worin sich 

die Motivitation für die Untersuchung hydrochemischer Eigenschaften des Salar de Uyuni 

begründet. 

Praktische Tätigkeiten umfassten die Probenahme von Solen aus eigens gebohrten Brunnen 

und entlang von Transekten, die Entnahme von Oberflächensalzen, die Beprobung von 

Zuflüssen, Gesteinen und Sedimenten im Einzugsgebiet, sowie deren chemische und 

isotopische Analytik. Das oberflächliche, mittels ArcGIS ermittelte Einzugsgebiet, weist eine 

Größe von 63.000 km² auf und besteht hauptsächlich aus vulkanischen Gesteinen wie 

Ignimbriten und unverfestigten Ablagerungen, Salzausblühungen und lakustrinen Sedimenten 

in ausgeprägten Überschwemmungsebenen. Die Poren der obersten, zwischen 2 und 11 m 

mächtigen Salzschicht, sind mit einer an NaCl gesättigten Salzlösung, die reich an Mg, K, Li 

und B ist, gefüllt. Die inhomogene Verteilung von Li im Salzsee weist zwei Bereiche signifikant 

erhöhter Konzentrationen von bis zu 1,5 g/L auf, und zwar im südlichen Einmündungsbereich 

des Hauptzuflusses Río Grande und im Nordosten etwa 20 km von der Küste entfernt, 

verglichen mit einem durchschnittlichen Gehalt von 0,3-0,4 g/L in der Sole. 

Das Alter der Solen der obersten Salzkruste wurde auf 6.200 – 13.340 Jahre bestimmt, was 

dem Alter der umgebenden Evaporite entspricht und eine stabile Schichtung aufweist. 

Allerdings weist die Analytik von δ2H und δ18O auch auf eine lokale Vermischung der Sole mit 

Frischwasser aus ufernahen Aquiferen hin. Die Verteilung der stabilen Isotope δ²H und δ18O 

deutet auf einen signifikanten Einfluss der Verdunstung auf die Entwicklung der Porenlösung 

hin, denn auch kleinere Zuflüsse zum Salar sind angereichert an 2H und 18O. Das Verhältnis 

verschiedener Elemente zu Brom zeigt, dass Li, K und Mg weniger durch die Ausfällung von 

Salzen aus der Lösung entfernt, sondern eher durch Ionenaustausch aus Tonmineralen 

freigesetzt und folglich in der Sole angereichert werden.  

Die analysierten Gesteine, hauptsächlich rhyolitischen und dazitischen Typs, weisen moderate 

Lithiumkonzentrationen von 4 – 37 mg/kg auf. Die Anwendung verschiedener Aufschlüsse 
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zeigte, dass die im Einzugsgebiet des Salar de Uyuni vorkommenden Gesteinstypen aufgrund 

der intensiven physikalischen und chemischen Verwitterung unter den spezifischen 

Umweltbedingungen eine wesentliche Quelle des Lithiums im Salzsee sind. Erhöhte Li-

Konzentrationen in Gesteinen und Sedimenten der vulkanischen Flanken südlich des Salars 

deuten auf das südliche Einzugsgebiet als hauptsächlichen Zulieferer für Li hin. Die 

Anreicherung von Li wurde auch mittels der Untersuchung der Salze der obersten Kruste 

bestätigt. Im Vergleich zur Oberfläche innerhalb der Polygone sind die Salzausblühungen 

entlang der Polygonränder signifikant an Li, K, Mg und anderen Ionen angereichert. Die 

Anreicherung von Li geschieht ganzjährig entlang der Schrumpfungsrisse an Polygonrändern, 

indem die Sole durch kapillare Kräfte aufsteigt, Wasser verdunstet und NaCl ausfällt. 

Schließlich bleibt eine an Li und anderen Ionen wie Br, B, K und Mg noch stärker 

aufkonzentrierte Lösung zurück. 

Schlussfolgernd resultiert die Akkumulation von Lithium in der Porenlösung aus der 

Kombination zahlreicher standortspezifischer Faktoren, welche innerhalb der vorliegenden 

Arbeit untersucht und bewertet wurden.  



VIII 

 

IV   Resumen 

El Salar de Uyuni, con una superficie de ~10.000 km² es el lago salado más grande del mundo 

y se encuentra a una altitud de 3.653 m en el sur del Altiplano Boliviano, una cuenca 

endorreica entre las cordilleras oriental y occidental de los Andes. Hasta una profundidad de 

al menos 220 m, el salar consta de una alternancia de estratos evaporíticos (principalmente 

halítico) y capas de arcilla lacustre. La estratificación deriva de la alternancia de fases 

climáticas secas y húmedas durante el Cuaterna. Con una cantidad estimada de 7 millones 

de toneladas, el salar está actualmente considerado el recurso de litio (Li) más grande del 

mundo. El conocimiento de la génesis y distribución del Li es fundamental para su extracción 

y la de otros elementos de valor a escala comercial. Este es el objectivo que se persigue al 

realizar esta investigación sobre las características hidroquímicas del Salar de Uyuni. 

El trabajo práctico comprendia el muestreo de salmueras de pozos (perforado y construido 

por sí mismo) y a lo largo de transectos, la toma de sales de la superficie, el muestreo de 

afluentes, rocas y sedimentos en la cuenca, así como el análisis químico e isotópico. La 

cuenca superficial, determinada mediante ArcGIS, tiene una tamaño de 63.000 km² y 

principalmente consiste en rocas volcánicas como ignimbritas, sedimentos sueltos, depósitos 

salados y material lacustre en llanuras inundables extensas. Los poros de la capa de sal 

superior con un grosor de 2 y 11 m están llenos de una salmuera saturada, rica en Mg, K, Li 

y B. La distribución de Li heterogénea en el salar promedio es de 0.3-0.4 g/L en la salmuera. 

Muestra dos regiónes de concentraciónes muy elevadas de hasta 1.5 g/L, en el sur del delta 

del afluente principal Río Grande y en el nordeste a una distancia de 20 km de la orilla. 

Las salmueras de la capa de sal superior tienen una edad entre 6.200 y 13.340 años, que 

corresponde a la edad de las evaporitas circundantes y tienen una estratificación estable. Sin 

embargo, el análisis de δ2H y δ18O indica la mezcla local de la salmuera con aguas dulces 

de acuíferos ribereños. La distribución de isótopos estables indica una importante  influencia 

de la evaporación en el desarrollo de la salmuera, ya que los afluentes pequeños están 

enriquecidos con los isótopos pesados de H y O. La relación de elementos diferentes a bromo 

muestra que Li, K y Mg no son eliminados de la solución por precipitación de sales, sino que 

se liberan por intercambio iónico con arcilla y, por lo tanto, se enriquecen en la salmuera. 

Las rocas analizadas, principalmente de tipo riolítico y dacítico, tienen concentraciones 

moderadas de litio de 4 a 37 mg/kg. El uso de diferentes disgregaciones mostró que los tipos 

de roca presentes en la cuenca del Salar de Uyuni son una fuente importante de litio en el 

lago salado, debido al intenso desgaste físico y químico bajo las condiciones ambientales 

específicas de la zona. En las rocas y sedimentos de los flancos volcánicos al sur del salar 

hay un aumento de las concentraciónes de Li que indica la cuenca sur es el proveedor 

principal de Li. La acumulación de Li también se ha confirmado mediante la investigación de 
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sales superficiales de la capa superior. En comparación con la superficie dentro de los 

polígonos de fisuras, las eflorescencias salinas se enriquecen significativamente en Li, K, Mg 

y otros iones. La acumulación de Li ocurre durante todo el año a lo largo de las grietas de 

desecación en los bordes de los polígonos. Allí, la salmuera aumenta por fuerzas capilares, 

el agua se evapora y el NaCl precipita. Finalmente, queda una solución aún más concentrada 

de Li y otros iones como Br, B, K y Mg. 

En conclusión, la acumulación de litio en la solución de poros resulta de la combinación de 

numerosos factores específicos del lugar, que han sido investigados y evaluados en el 

presente trabajo.  
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1 Introduction 

Salt lakes all over the world have long attracted people for their unique striking appearance, 

encouraging to wonder and think about the nature’s ability of forming such impressive 

phenomena. For mankind, they serve as an archive of climatic history, as a place of recreation 

and, with increasing importance, as a resource of a growing number of present and future 

strategic elements. Salt lakes occur in a large variety of appearances, exhibiting a wide range 

of hydrological, geochemical and hydrochemical characteristics. Williams (1996) defined salt 

lakes as endorheic lakes containing salt accumulations or waters with at least 3‰ salinity. Salt 

pans, or salt flats, form from salt lakes by the complete evaporation of the superficial water. 

Depending on the location, salt lakes are named Sabhka (Arabian Peninsula), Chott (Northern 

Africa), playa (Southern USA) or Salar (South America). Regardless their significant 

differences, salt lakes exhibit two equal features: they form the deepest part of endorheic 

basins, and they usually occur under semiarid to arid climatic conditions, where evaporation 

exceeds precipitation. Depending on the climate, geological and hydrological conditions, salt 

lakes can be (seasonally) flooded or all-the-year dry, covered by a few mm or several m thick 

evaporate crust, very small or up to 10,000 m² in size, filled with varying layers of impermeable 

clayey sediments or porous salt aggregations. Salt lakes mainly contain NaCl, but also other 

salts and elements, which are transported by inflows in dissolved form or as suspended matter 

over large time spans. The general characteristics of salt lakes are responsible for a certain 

feature of some of them: the occurrence of elements, e.g. lithium, bromine and boron, in a 

highly concentrated form, strongly enriched compared to the element concentration in the 

inflow. The following thesis deals with the largest of all salt pans on earth and its giant lithium 

accumulations, the Salar de Uyuni in Bolivia: The salt lake, which has attracted scientists and 

tourists in equal measure for a long time. The salt lake, that Neil Armstrong thought to be a 

giant glacier after seeing it from space. Today this lake is focal point of an entire nation for a 

wealthy future. 

1.1 Lithium market and availability 

In view of the depletion of fossil fuels and the increasing threat of climate change, the focus is 

intensively put on electric mobility and replacing fossil fuels by alternative energy which 

requires storage systems for electricity. Among numerous energy storage systems, lithium 

batteries have turned out to be the most promising tool for an effective value chain from 

resource extraction over efficient energy use to recycling processes. In 2009, the German 

government defined an ambitious goal by bringing one million electric cars onto German roads 
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until 20201. Although the amount of 35,000 electric cars in Germany (Jan. 2017) was far away 

from that goal, the worldwide number has rapidly risen in the last years. The high demand for 

lithium as a resource has increased the lithium price on the global market by a multiple from 

1,500 US$ per metric ton in 2005 to 9,000 US$ in 20172, whereat a strong further rise is to be 

expected in the next years. Besides its use in batteries, lithium is required in several other 

industrial branches. Amongst others, it is needed for the production of glass and ceramics, 

lubricating greases, aluminium alloys and pharmaceuticals (Angerer et al. 2009). Thereby, the 

demand for lithium in the various industrial fields has increased by 400% between 1995 and 

2015 (Martin et al. 2017). 

In nature, lithium deposits of three types occur: brines, pegmatites and sedimentary rocks. 

Deposits of lithium salts do not occur naturally caused by the high tendency of the element to 

stay in solution. The distribution of lithium resources according to the source type is shown in 

Fig. 1. Pegmatites, intrusive igneous rocks, occur in the proximity of large magmatic intrusions 

and were formed by the crystallization of post magmatic fluids (Evans 2008). Spodumene, 

lepidolite and petalite are the main lithium containing minerals, recoverable amounts are for 

example exploited in the mining areas Greenbushes, Australia, and King’s Mountain, USA. 

The process chain of flotation, grinding, leaching and precipitation of lithium carbonate is 

energy and cost intensive and adherent to a high consumption of concentrated chemicals 

(Grosjean et al. 2012). Sedimentary rocks as lacustrine evaporates and clay can also host 

considerable amounts of lithium (Gruber et al. 2011). The element is incorporated in the 

structures of clay minerals as smectite and illite, from where it must be separated by chemical 

treatment. Hectorite, a magnesium lithium smectite, is formed by the alteration of volcanic ash 

and tuff with a high silica content in combination with hot spring activity (Mineralogy 

Database3). Bearable amounts can be found in Hector, California, and Kings Valley, Nevada.  

A recently recognized deposit of jadarite, a silicate mineral containing lithium and boron, was 

found in lacustrine evaporite layers in the Jadar Valley, Serbia (Stanley et al. 2007, Kesler et 

al. 2012). The by far largest amounts of profitably recoverable lithium are contained in natural 

brines (Garrett 2004). According to the origin, two types of lithium bearing brines must be 

differentiated. Formation brines develop from the evaporation of saline fluids and their trapping 

into the pores of evaporates. Thereby, lithium is enriched in the pore brine, as it is not 

incorporated in mineral phases under saline formation conditions. In the course of the sediment 

sinking the pore brine is transported to deeper lying strata, where it is diagenetically altered 

under the influence of high temperatures and pressure (Müller & Papendieck 1975). These 

                                                
1 According to “Nationaler Entwicklungsplan Elektromobilität”, published by the Federal Government 

(2009) 

2 Level as per Dec. 2017, www.metalary.com 

3 Access on homepage: http://webmineral.com/ 
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brines are usually accessed in the course of geothermal exploration (geothermal water) as well 

as oil and gas production (oilfield brines). Brines in deep aquifers of the Rotliegend and 

Buntsandstein in the North German basin show lithium concentrations up to 360 ppm (Lüders 

et al. 2010). Lithium enriched formation brines with contents up to 1,500 mg/L occur worldwide, 

amongst others, in the Smackover Formation in USA (Collins 1978), the Chinese Qaidam 

Basin (Tan et al. 2011), the Mexican Activo Luna Oilfield (Birkle et al. 2002) and the Russian 

Siberian Platform (Shouakar-Stash et al. 2007). Due to comparably low Li concentrations, the 

exploitation of the element Li is nowadays only profitable in combination with the extraction of 

other value components, and is currently performed only in few locations (e.g. Salton Sea, 

USA). 

 

Fig. 1: Estimated global distribution of lithium resources (∑= 43.25 Mt Lithium) according to source 
 type, and shares of different countries on resources in salt lake brines (numbers and data 
 sources are collected in Table A - 1) 

The second type of lithium bearing brines are the pore brines of salt lakes and salt pans. The 

majority of lithium-enriched lacustrine evaporate basins occur in the so-called lithium triangle 

consisting of northern Chile, western Bolivia and north-western Argentina (Fig. 2). Hundreds 

of salt pans of varying sizes exist in that area, many of them containing lithium-enriched brines. 

Different conceptions exist about the increased occurrence of lithium brines in that region. 

These include the frequency of closed basins, high intensity of weathering processes due to 

specific climatic conditions and high altitude, volcanic activity and the occurrence of lithium-

containing source rocks. Differing regional tectonic and climatic conditions lead to strong 

variations in structure and stratification, the chemical composition of sediments and brine, and 

the hydrogeological situation.  
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For the sake of completeness regarding lithium 

resources, it should be mentioned, that Japanese 

scientists put strong efforts in the developments of 

methods for the extraction of lithium from seawater, as 

there is a huge total reserve base worldwide (Wang et 

al. 2008). However, at the current state of technology 

and the current Li-price it is not possible to handle the 

low lithium concentrations cost efficiently. Most recent 

estimates of total lithium resources worldwide from all 

source types amount to roughly 43 million tonnes, 

whereby values vary largely according to different 

sources and correctness of data. When discussing the 

supply of any value element it must be distinguished 

between resources and reserves. While resources 

describe the physical amount of an element in a 

geologic deposit with a current or near-future economic 

extraction feasibility, reserves name the part of 

resources that are assumed to be extracted in the future (Mohr et al. 2012). Hence, the global 

reserve estimate for lithium is much lower with 14,000 Mt or 74,500 Mt Li2CO3. In 2016, 

approximately 35,000 t of metallic Li were mined worldwide, mainly produced by Australia 

(41%), Chile (34%), Argentina (16%), and China (6%) (U.S. Geological Survey 2017). The 

largest known deposits are contained in the pore brine of the Salar de Uyuni in Bolivia, the 

largest salt flat on earth. Different studies amount the lithium resources in the range of 5 to 10 

million tonnes (Ballivian & Risacher 1981, Gruber et al. 2011, Risacher & Fritz 1991b, Sieland 

2014). The large range is due to different assumptions of porosity, concentrations and depth 

of the evaporate layers.  

To date, a large-scale industrial production of lithium carbonate from the Salar de Uyuni does 

not exist. In the past years, the Bolivian government in form of the national mining corporation 

COMIBOL put strong efforts and large financial means in the development of an extraction 

technology and the build-up of a pilot plant near the shore of the salar. It was planned to win 

potassium chloride, lithium and other by-products with the help of giant evaporation ponds 

similar to the large facilities run by the company SQM in the Salar de Atacama. However, the 

natural conditions at Uyuni like the annual flooding of the salt lake and its southern vicinity 

during the rainy season, the high magnesium concentrations in the brine requiring costly 

separation techniques, and the position in an extreme remote area lacking infrastructure and 

large water reservoirs, makes the mining of lithium challenging.  

Bolivia 

Argentina 

Chile 

Fig. 2: Location of the lithium triangle 
 in South America 
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1.2 Contribution of TU Bergakademie Freiberg 

Research at the Salar de Uyuni under participation of workers from TU Bergakademie Freiberg 

dates back to the 1980’s, back then mainly under the aspect of a general geological and 

geochemical characterisation (Wolf 1988). Since then, joint research was performed in 

cooperation with the Universidad Autónoma Tómas Frías (UATF) in Potosí, Bolivia. The focus 

was mainly set on the utilization of the salar as a lithium resource by the use of innovative and 

regionally adapted extraction methods in cooperation with local authorities and including the 

resident population (Voigt et al. 2010a, b; Voigt 2014). Parallel to that goal, research was 

expanded to geological and hydrogeological aspects, because the knowledge of enrichment 

processes and the exact characterization of the hydrochemical and hydraulic properties is a 

mandatory requirement for a successful mining in combination with minimizing environmental 

impacts (Fig. 3). In 2014, Sieland published an extensive work dealing with the hydraulic 

conditions at the Salar de Uyuni (Sieland 2014). Pumping tests, porosity determinations and 

long-term brine level measurements served for the investigation of the hydraulic properties of 

the uppermost salt crust. Based on the gained information, detailed lithium resource 

estimations for the upper salt layer could be established. 

 

Fig. 3: Participation of institutes and departments of the TU Bergakademie Freiberg in the research 
 of the Salar de Uyuni, shaded fields are part of the work 
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1.3 Aim of work 

Brines, contained in the pores of salt deposits all over the world, show a wide range of element 

compositions. Accordingly, also lithium occurs in concentrations of below detection limit to 

highly economically exploitable values of several grams per litre. This work aims to examine 

the (hydro)-geological, hydrochemical and hydrological circumstances that led to the specific 

distribution of lithium and other solutes as bromine, potassium and boron in the pore brine of 

the Salar de Uyuni. This includes the identification of the sources / origin of the elements, their 

mobilization, transport mechanisms and the study of the final deposition, influenced by several 

processes of enrichment. In concrete, the work should help solving the following questions:  

1. What are the sources of the lithium detected in the brines of the Salar de Uyuni? 

2. What specific geological, hydrogeological and hydrochemical conditions must be present 

and interact leading to the formation of highly lithium-enriched pore brines, especially for 

the Salar de Uyuni? 

3. What enrichment mechanisms provide the accumulation of lithium and other solutes in the 

pore brine of the Salar de Uyuni? 

4. How can the heterogeneous distribution of lithium and other elements in the pore brine be 

explained, especially regarding an anomaly in the northeastern part of the Salar de Uyuni? 

5. Did a superficial connection to the Salar de Coipasa exist in the past and is it still active in 

recent times? 

6. Does the composition of the uppermost salt crust give hints to the underlying brine 

composition? 

7. How does wind influence the distribution of solutes in the pore brine? 

8. What is the recent influx of lithium and other solutes to the salar, especially in proportion 

to the withdrawal planned for the industrial extraction of the brine? 

9. Why do some saltpans accumulate large amounts of lithium, but others, existing under 

similar environmental conditions, are unremarkable regarding that feature? 

This work aims to close the gap between the fragmentary comprehension of complex and 

interconnected processes of salt lake development and the economical need of understanding 

the hydrogeological system for the estimation of the region’s mining potential. It will provide 

help for companies interested in the exploitation of the world’s largest known lithium resource, 

researchers in deepening the understanding of salt lake characteristics, and locals helping to 

realize the impressive miracle of nature at their front door. It was not aim of this work to 

investigate environmental problems including availability of water for the processing of the 

brine. 
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2 Region of interest 

The investigations were concentrated on the Salar de Uyuni including its vicinity and 

catchment. With a size of roughly 10,000 m² the Salar is considered as the largest salt flat on 

earth, situated at an altitude of 3,650 m. It forms the central trough and largest depression in 

the southern part of the Bolivian Altiplano. Scientific research at the Salar and its vicinity goes 

back to the 1980s and was strongly intensified after the first descriptions of high lithium 

appearances in the pore brine. Between 1965 and 1985 the Mining Academy Freiberg 

intensively investigated the salars of the Altiplano regarding geological, geochemical and 

hydrological aspects, putting a special emphasis on the Salar de Uyuni (Wolf 1988, Wolf 2010). 

The U.S. Geological Service first published data on lithium-enriched brines in the Salar de 

Uyuni and other salars in the central Andes (Ericksen et al. 1976, Ericksen et al. 1977, Ericksen 

et al. 1978). At the same time, field partys lead by the ORSTOM4 investigated cross-sections 

in the delta region of the Río Grande (Risacher & Miranda 1977, Rettig et al. 1980). First 

analyses of surrounding rhyolites as a possible source of lithium were done by the GEOBOL-

ORSTOM-USGS cooperation in 1978 (Davis et al. 1982). From the 1990s, several papers 

concerning the geochemistry, source and enrichment of solutes in the salars were published 

(Risacher & Fritz 1991a, Risacher & Fritz 1991b, Risacher & Fritz 1992, Schuler et al. 1995, 

Risacher & Fritz 2009), whereby also the behaviour of bromide was in the focus of attention 

(Risacher & Fritz 2000, Risacher et al. 2006). Superficial features in form of parabolic halite 

dunes were described in Svendsen (2003). The Salar de Uyuni was also target to several 

remote sensing studies, either as a reference for several elevation detection satellite missions 

(Fricker et al. 2005, Borsa et al. 2008b), the correlation of topography to the local equipotential 

surface (Borsa et al. 2008a), or high-accuracy bathymetrical measurements (Bills et al. 2007). 

Further research, supported by remote sensing techniques and field investigations, focused 

on the morphology in the course and the terminus of the Uyuni contributing river systems 

(Hosseini Aria et al. 2012, Donselaar et al. 2013, Li 2014, Li et al. 2014). Recently, the focus 

of research was put on the extraction of lithium from the Uyuni pore brine. 

2.1 Geographical and hydrological situation 

 The Altiplano (Spanish meaning high plateau) is a large interior drainage basin extending on 

an area of roughly 200,000 m² between the eastern and western cordilleras of the Andes, 

encompassing parts of Chile, Peru and Bolivia (Fig. 4). With a length of 1000 km and a width 

                                                
4 Office de la recherche scientifique et technique outre-mer 
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of 200 km it forms a large and narrow depression (Guyot et al. 1990). From north to south the 

precipitation decreases significantly leading to a N-S transition from drained freshwater lakes 

over desiccating brackish water bodies to the poorly drained intra-volcanic basins occupying 

temporarily flooded salt pans and playas. The Altiplano can be divided into four separate sub 

basins (Risacher et al. 2006). Lake Titicaca, situated at an elevation of 3810 m, forms the 

northernmost drainage system, having a size of approximate 7000 km² and depths up to 300 

m. It is considered oligosaline and mesotrophic (Fritz et al. 2007). The annual water input to 

the lake amounts to nearly equal parts from riverine input and direct precipitation on the lake 

surface (Roche et al. 1992). The Río Desaguadero to the south of lake Titicaca is the only 

outflow, thus the river accounts for less than 10% of water loss from the lake. 

 

Fig. 4: Hydrological systems and drainage basins of the Altiplano (after Risacher & Fritz 2000) with 
 the outline of the investigation area (orange dotted line) 
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More than 90% of the water loss results from evaporation on the lake surface (Fontes et al. 

1979). The river serves as overflow to Lake Poopó, a very shallow salty lake with a depth of 

less than 2 m and a size of maximum 2,000 km² (Bengtsson 2012). Depending on the season, 

its size varies strongly and due to a lacking outflow it can be considered a terminal lake. To the 

southwest follows the third sub basin, the Salar de Coipasa (2,500 km²; 3,656 m). An 

insuperable watershed between Río Marques flowing towards Lake Poopó and Río 

Lacajahuira flowing to Coipasa impedes a superficial hydraulic connection between the two 

lakes (Wolf 1988, Wolf 2010). Especially during the rainy season the Salar receives large water 

masses from several perennial streams including Río Lauca and Lacajahuira, enriched with 

sediments and dissolved salts from the Altiplano. To the south the fourth and largest sub basin 

of the Altiplano, the Salar de Uyuni, adjoins. With N-S and W-E extensions of max. 140 km and 

110 km, respectively, and located at a height of 3,653 m, it forms the deepest part of the 

depression. To the north the Salar is bordered by the Serrania Intersalar with Mt. Tunupa 

directly adjoining to the lake shore (Fig. 5). The Salar de Uyuni receives year-round inflows 

only from the southeastern side by means of the Río Grande de Lípez and the Río Colorado 

(locally called Río Pucumayu). 

 

Fig. 5: View of Mt. Tunupa at the northern shore from the center of the Salar de Uyuni 

The southwestern part of the Bolivian Altiplano, located at heights of 4,100 to 4,600 m in a 

region of high volcanic activity, is characterized by large endorheic basins which are in different 

stadiums of salt pan formation (Wolf 1988). Basins are delineated by volcanoes reaching up 

to 6,000 m in height, lava flows and ignimbrites (Risacher & Fritz 1991a). The mountain range 

of the Serrania Khenval forms the drainage divide to the eastern located Río Grande river 

system (Fig. 4).  
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2.2 Geological situation and evolution from paleolakes 

The eastern cordillera of the Andes is predominantly characterized by palaeozoic sediments 

(sandstones, shales, quartzites). In the Altiplano, where they constitute the basement, they are 

covered by a ~15,000 m thick continental sedimentary sequence of Cretaceous, Tertiary and 

Quaternary age (sandstones, claystones, mudstones, shales and evaporates) (Risacher 

1991b, Lebrun et al. 2002). Gypsum diapirs of cretaceous and tertiary age crop out in northern 

and central-eastern parts of the basin. The origin of the Cordillera Occidental (Western 

cordillera) is mostly volcanic, whereby tertiary formations are overlaid by strato-volcanoes, 

ignimbrites and lava flows. Volcanoes reach up to 6,000 m along the north-south striking chain 

and range from andesites to rhyodacites (Fernández et al. 1973). 

The Altiplano basin was formed during the uplift of the Andes, which began 25 Ma ago in the 

early Tertiary. The uplifting was the result of crustal thickening caused by horizontal shortening 

of a thermally softened lithosphere supported by magmatic processes and upper mantle 

hydration (Allmendinger et al. 1997). Coincident with the Andean orogeny, the volcanic activity 

on the Altiplano began in early Miocene times. Large volumes of ignimbrite erupting from 

caldera-shield complexes in the southern Altiplano were followed by the built of 

stratovolcanoes during late Miocene to Holocene time along the Andean arc. Major volcanoes, 

as Mt. Sajama at the Chilean border and Mt. Tunupa at the northern shore of the Salar de 

Uyuni, are composed of andesitic to dacitic lava flows, pyroclastic rocks and flow breccias and 

distinctly underlie hydrothermal alteration effects (U.S. Geological Survey 1975). 

In the past, the Altiplano was covered by numerous paleolakes which repeatingly were subject 

to flooding and desiccation, according to the prevailing climatic conditions (Fornari et al. 2001). 

Thereby, the water balance in the high plateau is linked to climatic changes in the Amazon 

basin, which is the main source of humidity in the northern Altiplano (Chepstow-Lusty et al. 

2005). In a phase of increased effective moisture during the early Pleistocene, two large lakes 

were present, Lake Ballivian in the north, which left Lake Titicaca as remnant and Pre-Minchin 

in the south (Ahlfeld & Branisa 1960). In the late Pleistocene Pre-Minchin was followed by Lake 

Minchin (>32,200 yr. B.P.) which covered the salars of Uyuni, Coipasa and lake Poopó in the 

southern Altiplano (Fig. 6). During its maximum size, large amounts of CaCO3 were deposited 

in the lake (Ericksen et al. 1978), leading to the enrichment of more soluble components as 

chloride and sulphate in the lake water. Radiocarbon dating of shells in lacustrine outcrops 

from the central Altiplano showed that the most recent lacustrine phase occurred from about 

25,000 yr. B.P. to about 12,000 yr. B.P., named as Lake Tauca (Servant & Fontes 1978). 

Investigations on carbonate algal reefs (bioherms) marking ancient shorelines showed that 

paleolake Tauca covered an area of 60,000 km² and reached depths of >100 m (Sylvestre et 

al. 1999). The modeling of surface energies and water budgets lead Hastenrath & Kutzbach 
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(1985) to the conclusion, that a precipitation increase of 50 – 75% was needed to form the 

extensions of paleolake Tauca. 

 

Fig. 6: Reconstruction of paleolake levels in a N-S profile along the northern and central drainage 
 basins of the Altiplano (Fornari et al. 2001). The dotted line represents the overflow level for 
 the older paleolakes 

In 1995 the U.S. Geological Service published a detailed digital geological map of the Altiplano 

and the western cordillera of the Andes, containing major and minor volcanic centers. The map 

was digitized from 15 field compilation maps produced by the Servicio Geológico de Bolivia 

over the last decades, and verified by field studies (Marsh et al. 1995). The southeastern part 

of the Salar de Uyuni catchment is mainly characterized by surficial deposits and sediments 

dating back to Holocene and Pleistocene, including unconsolidated alluvial, eolian and colluvial 

material, locally supplemented by shallow lacustrine and salt deposits (Fig. 7). The region west 

of the salar mostly consists of stratovolcano deposits with lava flows and flow breccias of 

andesitic to dacitic composition, complemented by extensive outflow sheets of ignimbrites and 

ash-flow tuffs (Fig. 7). Tributaries to the Río Grande and Río Colorado have their source in 

springs and thermal springs located in elevated mountain regions and volcanic flanks, which 

are rich in ignimbrites and pyroclastic rocks of volcanic origin. The main course of the rivers 

and their tributaries is characterized by unconsolidated surficial deposits resulting from the 

alternating processes of weathering, associated mineral dissolution, and the deposition of silts 

in the extended floodplains. The dominance of these deposits is reflected in Fig. 36, which 

illustrates the distribution of geological units in the catchment of the Salar de Uyuni. The 

evaluation of Skylab and Landsat images by Francis & Baker (1978) showed that ignimbrite 

shields in the Southern Bolivian Altiplano have their source in large calderas which erupted 

during the Miocene and Pliocene. 



Region of interest 

 

12 

 

 

Fig. 7: Geological map of the southern Altiplano including the estimated drainage line for the Salar
 de Uyuni catchment (Marsh et al. 1995; for description of geological units see Table A - 14)  
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2.3 Climate 

The climate of the Altiplano is arid according to the definition of the UNEP (Barrow 1992). 

Depending on the prevailing circulation, the Altiplano receives influences from the dry and 

stable conditions of the Southeast Pacific Anticyclone across the western cordillera of the 

Andes and from moist and warm conditions of the lower troposphere across the eastern 

cordillera (Vuille 1999). The majority of precipitation occurs during the Austral summer from 

December to March, where between 70% (Titicaca) and 90% (Uyuni) of the rain falls (Fig. 8). 

Intensity and timing of rainfall in the Altiplano is controlled by several major circulation systems 

as the Inter-Tropical Convergence Zone (ITCZ), the El Niño-Southern Oscillation (ENSO), the 

Bolivian High and the South Atlantic Convergence Zone (SACZ) (Garreaud et al. 2003). A 

pluviometric gradient exists from north to south, leading to a variation in mean annual 

precipitation between 700 mm at lake Titicaca and less than 100 mm at the southern border of 

the Altiplano (Fig. 8). The southward shift of the ITCZ in austral summer goes along with 

easterly winds and high temperatures, leading to the incursion of humid air from the Amazonian 

basin. With further distance from the northern parts of the basin this influence becomes rare, 

explaining the N-S increase in aridity. 

 

 

Fig. 8: Climate at different stations on the Altiplano (climate data stem from the SisMet database of
 the Bolivian Senamhi – Servicio Nacional de Meteorología e Hidrología); numbers in the
 diagrams show the annual precipitation, Tavg is the average temperature (map adapted from
 Risacher & Fritz 2000) 

According to the Köppen climate classification the salar and its catchment are located in the 

Bwk belt, named as cold-arid dry winter desert (Warren 2016). The mean evaporation rate of 
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more than 1,500 mm/a strongly exceeds the annual precipitation of 180 mm, which results in 

the Salar de Uyuni being a saltpan (Argollo & Morguiart 2000). The Altiplano experiences large 

variations in the amount of precipitation on the interannual timescale. For example, the austral 

summer of 1983/1984 with a total rainfall of 420 mm was extremely wet, compared to the very 

dry rainy season with 60 mm the year before5. This difference can to a significant fraction be 

explained by the El Niño phenomenon, which describes unusual anticyclic currents in the 

ENSO system. Generally, El Niño years are associated with dry conditions on the Altiplano, 

whereas La Niña occasions lead to high rainfalls. 

2.4 Geochemistry and hydrochemistry 

The stratigraphy of the Salar de Uyuni sediments is characterized by the alternation of 

evaporites and lacustrine layers, which were formed according to the prevailing climatic 

conditions. The thickness of the uppermost salt crust varies between 0.5 m near the south-

western shore and 11 m in the eastern part. A few drillings for scientific purpose have been 

performed on the Salar in the past, whereby the focus was mainly set on the research of 

climatology on quaternary time scales and associated vegetation changes and 

paleolimnological conditions. In 1986 a first drilling in the center of the Salar de Uyuni was 

performed by a cooperation of the French scientific institute ORSTOM and the Bolivian Ministry 

of Mines (Fornari et al. 2001). The 121 m deep drilling revealed 12 hard salt crusts separated 

by 11 soft mud layers reflecting the alteration of desiccation stages during dry climatic periods 

and lacustrine phases during humid climatic periods (Fig. 10). Geochemical analyses showed 

that salt layers are mainly composed of NaCl with minor amounts of gypsum. Mud layers are 

composed of calcite, volcanic detritus, gypsum and organic matter. By radiocarbon dating of 

the sediment cores the two upper major mud layers could be assigned to the corresponding 

paleolakes Tauca and Minchin, lasting from 16,000 to 12,000 yr. BP. and 70,000 to 30,000 yr. 

BP, respectively (Fornari et al. 2001). In 1999 another drilling to a depth of 220 m was 

performed by researchers from Duke University, USA. 

                                                
5 Data from Senamhi (Servicio Nacional de Meteorología e Hidrología); meteorological station: Uyuni 

Fig. 9:  Polygon structures with salt efflorescences in detail (pictures by Wolfram Canzler, August 
2015) 
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The measurement of natural γ-radiation in the upper 188 m of 

the cased borehole revealed a decreasing persistence and 

thickness of the mud layers until a depth of 140 m, beyond that 

a continuous salt layer follows until the final depth of 220 m 

(Baker et al. 2001, Fritz et al. 2004). Hence, the duration of 

paleolakes increased significantly during the Pleistocene. 

Model calculations showed that a temperature lowering of 5°C 

together with a 30% increased precipitation compared to the 

modern time must have prevailed in order to preserve the large 

paleolakes of the Altiplano against desiccation by evaporation 

(Blodgett et al. 1997). The total depth of the evaporite filled 

basin is not known so far. The upper salt crust is characterized 

by an average porosity of 30-40% (Risacher 1991b). The 

pores are filled with an interstitial brine, the brine table is 

localized in a depth of 10-40 cm. First investigations on brine 

chemistry were done in the 1970s by the U.S. Geological 

Survey (Ericksen et al. 1977, Ericksen et al. 1978, Rettig et al. 

1980), who as first researcher constituted the Salar de Uyuni 

as a potential major deposit for lithium. The saturated brine is 

of Na-Cl type, with high concentrations of potassium (up to 20 

g/L) and boron (up to 1 g/L). Lithium concentrations are about 

500 ppm in average, showing a high range between 100-1,500 

mg/L, depending on the location on the salar. Risacher et al. 

(1991b) collected brine samples from a marshy area at the 

southern shore in the delta region of the Río Grande, and 

measured lithium concentrations as much as 4 mg/L. 

Large parts of the salar surface are characterized by smooth, 

polygonal structures with diameters up to one meter, which are formed as a result of the drying 

of the superficial water layer at the end of the rainy season, similar to shrinkage cracks in 

clayey sediments (Fig. 9). Evaporation of surface water due to strong solar insolation and very 

low humidity associated with the precipitation of salts conducted the formation of a very hard, 

dense, cemented crust. During the dry season, evaporation is limited to the polygon margins, 

where brine rises due to capillary forces. As a consequence, salt efflorescences are formed on 

these cracks, reaching heights of few cm. 

Fig. 10: Depth profile of the 
 Salar de Uyuni 
 (modified from Fornari 
 et al. 2001) 
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During austral summer between December and March, the salar is completely covered with a 

water layer up to a level of about 50 cm, brought by precipitation on the lake surface and from 

the main tributaries and ephemeral streams transporting the rainfall from the catchment. An 

extensive study of the geological, hydrological and geochemical characteristics of the Salar de 

Uyuni and its surrounding was done in the 1980s by Wolf. He divided the geochemical cycle 

of the year at the salars of Uyuni and Coipasa into four different stages (Wolf 2010): 

1. Stage of desert soil weathering: dissolved solutes resulting from intensive physical and 

chemical weathering at the end of the rainy season attain the surface by capillary rise, 

where they precipitate as salt efflorescences due to evaporation of the solvent 

2. Stage of salt solution and transport: during heavy rainfalls at the beginning of the austral 

summer, superficial salt crusts from stage 1 are dissolved and transported together with 

detritus along the drainage system to the salar basin; meanwhile, aquifers are filled up, 

which enhances the solution weathering of subsurface sedimentary structures 

3. Stage of extensive flooding and pre-concentration: at the end of the rainy season extended 

floodplains at the southern shore of the salar exist, which serve for the slowdown of water 

masses and the sedimentation of detrital material in the delta areas of the tributaries 

4. Stage of major concentration and salt precipitation: with the beginning dry season and the 

corresponding higher solar insolation the flooding concentrates on the salar itself, where 

the uppermost crust is dissolved until the point of saturation; after exceeding the solubility 

product with further evaporation, halite precipitates and forms a new crust 
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3 Fundamentals 

The following section describes general characteristics of the element lithium and its 

geochemical behaviour in different compartments of the sedimentary cycle. Principal sources 

of lithium and mechanisms of enrichment are explained and its use as a tracer in genetic 

studies is presented. 

3.1 Lithium geochemistry 

Lithium (from lithos, the Greek word for stone) occurs in the earth’s crust with a concentration 

of about 20 ppm (Vine 1980), whereby literature values range from as low as 7 ppm (Bach et 

al. 1967) up to 60 ppm (Deberitz 1993). It thus belongs to the upper third of the most abundant 

minerals (Wietelmann & Steinbild 2000). Lithium, the third element in the periodic table, 

represents the lightest element (after H and He) in the periodic system with a density of 0.534 

g/cm³ at 20°C (Table 1), which is solid at room temperature and by this as well the lightest 

metal. On the other hand, it shows the highest energy density of all metals. As the other alkali 

elements, the lithium metal is very reactive to water and oxygen, which is increased in the 

presence of sodium, even at low concentrations of 0.5 – 1%. Its melting point is the highest of 

all alkali metals. With a value of -3.04 V lithium has the lowest standard electrochemical 

potential of all elements. This property together with its high electrochemical equivalent and 

the good electrical conductivity account for the advantages of lithium for its use as anode 

material in battery cells, as the high power output, very good storage properties and a small 

power loss (Wietelmann & Steinbild 2000). 

Table 1: Chemical and geochemical characteristics of lithium (values for average abundance are from 
 Vine et al. (1980)) 

Atomic number 3 Stable isotope 

ratio 

6Li: 7.59%, 7Li: 92.41% 

Atomic weight 6.941 g/mol Oxidation 

potential 

Li  Li+; E = 3.045 V 

Atomic radius 0.68 Å Geochemical 

classification 

Lithophile 

Density 0.534 g/cm³ Behaviour High reactivity with oxygen, high solubility 

Melting point 

Mohs hardness 

180.5°C 

0.6 

Average 

abundance 

[ppm] 

57 - Pelagic clay, 40 – granite, 

17 – basalt, 15 - sandstones,  

5 - carbonates, 0.17 - seawater 
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The geochemical character according to the Goldschmidt classification is lithophile, which is 

responsible for its high affinity to oxygen and the strong association with silica, leading to the 

formation of low-density minerals enriching in the earth’s crust rather than sinking to the core. 

Due to the small ionic radius, the substitution of lithium to sodium and potassium in common 

rock minerals like quartz and feldspar is rather low. The high solubility of the element in both 

liquid magma and water leads to its concentration in the residual fraction of magmatic melts 

and in residual brines during evaporative concentration (Vine et al. 1980). About 150 naturally 

occurring minerals with lithium as a major component are known, as Spodumene (LiAl(SiO3)2), 

Amblygonite ((Li,Na)Al(PO4)(F,OH)), Petalite (LiAlSi4O10), Lepidolite 

(K(Li,Al)3(Al,Si)4O10(F,OH)2) or Zinnwaldite (KLiFe2+Al(AlSi3)O10(F,OH)2). Most of these 

minerals are typical for the latest crystallization stage of igneous rocks, forming residual fluids 

of magmatic melts. Lithium has (as other alkali elements) in natural aqueous systems more or 

less no limiting mineral. Thus, Li behaves extremely conservative and stays in solution if 

dissolved. Lithium has two stable isotopes 7Li and 6Li, with a distribution of 92.58% and 7.42%, 

respectively, and a number of radioactive isotopes with very low half-lifes. The diagonal 

relationship between lithium and magnesium in the periodic system leads to similar chemical 

properties as the comparable atomic radius. This makes the separation of the two elements in 

the course of an industrial lithium extraction challenging, especially at high Mg/Li ratios. 

3.1.1 Lithium in the sedimentary cycle 

Generally, the lithium content increases from ultrabasic to acid igneous rocks, due to the 

elements’ tendency to accumulate in residual melts (Ronov et al. 1970). In contrast to ancient 

rocks, where the distribution of lithium and lithium-bearing minerals usually depends on 

geochemical processes occurring at higher temperatures and pressures, the content of lithium 

in sediments is a function of weathering, diagenesis and sedimentation processes taking place 

at low temperatures (Vine 1980). The release of lithium from rock-forming minerals can be 

attributed to weathering processes. A part of the lithium is incorporated into new minerals, and 

thus, enriched in the products of weathering, as it retains and concentrates in the clay mineral 

fraction (Horstman 1957). Thus, the element is mainly associated with the clay fraction of 

sedimentary rocks (Vine 1975). Shales for example show much higher lithium concentrations 

(20-100 ppm) than sandstones and limestones, where values are usually less than 20 ppm 

(Vine 1980). Another part of the lithium is transported in dissolved form by streams and rivers 

towards the terminal lake. Although evaporite sequences in closed basins should provide the 

best possibility to show high lithium concentrations, most evaporites a very low in lithium, due 

to the elements’ high solubility and its small size, which inhibits its substitution for other alkalis 
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in sulfates, halides and carbonates. Thus, it rather concentrates in residual brines trapped in 

the pore volume of evaporites in the shallow subsurface (Bradley et al. 2013). 

3.1.2 Lithium in salt lake brines 

Average lithium concentrations in salt lake brines vary from less than 50 ppm to 1,400 ppm in 

the Salar de Atacama (Fig. 11). Besides showing impressive maximum values of lithium in 

brine, the Atacama salt pan is also the largest producing lithium deposit at the time being; 

65,000 Mt Li2CO3 were produced from different operating mining companies in 2008 (Gruber 

et al. 2011). The Salar de Uyuni exhibits a rather large range of Li concentrations, which cannot 

be explained by evaporative concentration of the brine itself. Hence, the existence of 

enrichment processes leading to the heterogeneous distribution of the element in the pore 

brine must be considered. As indicated in Fig. 11, most lithium enriched salt lake brines occur 

within the lithium triangle. The 400,000 km² large region encompassing parts of the Bolivian 

Altiplano, eastern Chile and the Argentinian Puna contains about 130 salars with sizes from 

0.03 to 10,000 km² (Risacher & Fritz 2009). The morphology is widespread, ranging from 

permanent saline lakes with depths up to 10 m, over playas with seasonally drying shallow 

pools on the top of a confined aquifer, to salt crusts filled with interstitial brine and underlain by 

impermeable sediments. 

 

Fig. 11: Average lithium concentrations and min-max range of salt lake brines worldwide; triangle 
 indicates location in the Lithium Triangle (references are shown in Table A - 1) 

The development of strongly enriched lithium brines in porous evaporate crusts is bound to the 

synchronous existence of specific circumstances and regional features during large geological 

timescales. Noticeably, all closed-basin brines containing lithium deposits of economic interest 
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are of Quaternary age (Bradley et al. 2013). Generally, these continental brines share the 

following features (Bradley et al. 2013, Ericksen et al. 1976, Munk et al. 2016): 

1. Location in closed-basin environments undergoing tectonically driven subsidence: Only 

where outflow from the basin is absent or negligible, a significant accumulation of solutes 

can occur 

2. Semi-arid to arid climate: Only where evaporation exceeds precipitation, an enrichment of 

solutes in a residual brine is possible, and the removal of dissolved lithium from the basin 

by overflow along the drainage divide is impeded 

3. The existence of lithium-rich host rocks and other lithium sources: Easily leachable 

volcanic rocks such as tuffs and rhyolite sheets, magmatic fluids, ancient evaporate 

deposits and clay lenses are supposable sources of lithium; the coeval existence of 

multiple sources increases the final concentration of lithium in the salar brine 

4. Time for brine generation: The transformation of dilute waters to strongly enriched brines 

by leaching, transportation and concentration processes is time consuming; during that 

time, geologic, climatic and environmental conditions must remain unchanged 

5. Volcanic and hydrothermal activity: By providing hot water for the leaching of host rocks 

and/or serving as a lithium source from magmatic brines itself, hydrothermal activities in 

the subsurface are a significant contributor of lithium to the salar brines; further, 

hydrothermal flows enhance the formation of hectorite, which in turn can serve as a source 

of lithium by leaching of the clay sediments 

6. Large ratio of catchment size to salar size: A large drainage area results in a higher amount 

of weathered material, which is transported by rivers and streams to the salars 

Additionally, characteristics exist, that are not common in all salt lake lithium brines, but which 

lead to the further enrichment of the brine, making the difference of several magnitudes of 

lithium concentration in the brine. Summarizing, the best chances to find lithium enriched 

brines are closed desert basins in volcanic terrain in combination with the occurrence of lithium-

rich rock and water sources. 
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3.2 Mineral sources 

Usually, the exceptionally high accumulation of lithium in deposits is the result of the 

combination of more than one source. Mostly, a main source is amended by one or more minor 

contributors. Following, potential sources of lithium in salt lakes will be described. 

3.2.1 Leaching of volcanic rocks 

Volcanic activity plays a major role in the accumulation of lithium in brines. On the one hand, 

it serves as a primary lithium source due to the occurrence of volcanic rocks, on the other 

hand, it provides the heat for the convective circulation of groundwater as a requirement for 

the leaching of solutes from subsurface rocks (Vine et al. 1975). Generally, the leaching of 

lithium from the crystal lattice of all kind of rocks and minerals is very low at ambient 

temperatures. Though, long-term experiments have shown that the leaching of lithium from 

granitic rocks is strongly enhanced at temperatures of 275°C and pressures of 500 bar (Dibble 

& Dickson 1976). The occurrence of water-soluble salts in rhyolitic volcanic rocks of the central 

Andes and the possible leaching by circulating groundwater has been known since long 

(Ericksen 1961). Possibly, igneous intrusions provide the heat to power a convective circulation 

of meteoric waters in permeable rocks, leading to the leaching of lithium, which is then 

concentrated in adjacent closed basins (Vine 1975). 

Rock decomposition due to weathering leads to the release of B and Li, which are then easily 

sorbed to clay minerals and transported as suspended matter in streams towards the deepest 

part of the basin (Tan et al. 2012). The cycle of desert soil weathering, transport by run-offs, 

accumulation in the floodplains and precipitation of minerals, described in chapter 2.4, could 

play a major role in delivering lithium from the source rock to the brine. The composition of 

source rocks, weathered material, fluviatile sediments and the mud layers of salt lakes should 

give hints for the verification of these processes at the Salar de Uyuni. 

3.2.2 Hydrothermal and magmatic fluids 

Magmatic fluids associated to residual melts during differentiation, are enriched in elements 

as lithium and boron, which are incompatible or moderately imcompatible in magmatic 

systems. With 6-50 ppm Li in average, geothermal waters are generally elevated in lithium 

(Campbell 2009, Garrett 2004). Investigations in the Dead Sea, Tibetian salt lakes and the 

Qaidam basin showed, that hot spring waters from geothermal fields significantly contribute to 

the regional rivers’ high lithium and boron contents (Grimaud et al. 1985, Mianping 1997, 

Vengosh et al. 1991). Dischargings in springs and flowing as small streams towards larger 
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tributaries, hydrothermal waters can contribute to the elevated lithium content in rivers. If faults, 

which are frequently occurring in active tectonic zones of volcanic regions, are cutting through 

the river catchment, they serve as conduits for geothermal waters to the tributaries (Tan et al. 

2012). Hydrothermal systems, in combination with the occurrence of lithium rich rhyolitic rocks 

of Quaternary age, are suggested to play a major role in delivering lithium by thermal springs 

to the salt lake brines of the Andean salars (Ericksen 1978, Shcherbakov & Dvorov 1970, Tan 

et al. 2012). 

3.2.3 Ancient evaporites  

The huge amounts of halite in evaporate basins as the Salar de Uyuni cannot only be the 

results of leaching processes in volcanic rocks and the evaporative concentration from 

inflowing streams and precipitation. A possible source of sodium chloride and sulphate could 

be the recycling of ancient, buried evaporites (Risacher 1991a, Risacher 1991b). Gypsum 

diapirs are known from several regions of the Altiplano, also in the catchments of the salars of 

Uyuni and Coipasa (Fig. 4). The re-solution of older paleolake sediments by groundwaters 

provides large masses of salt for the accumulation in recent salt pan environments. Also, 

quaternary salars and associated brines covered by lava deposits and ignimbrites could be a 

possible source of solutes (Risacher 1991a). The ratio of Na/Cl in streams and brines may act 

as an indicator for the sources of halite. 

3.2.4 Atmospheric contribution 

A minor portion of mineral input can be related to precipitation and windblown dust. The 

mineralization of rainfall waters is generally low, but precipitation rates during the austral 

summer can be comprehensive. A significant higher grade of mineralization has snow, but due 

to the sparsity of snowfall events in the Bolivian Altiplano this aspect is probably negligible. 

The atmospheric input of dust particles is considerably higher. Especially during the dry 

season, wind speed can reach high values, and storm events are often. Due to the sparse 

vegetation cover and the flat morphology, salt and fine-grained sediment particles deposited 

at the end of the rainy season in the large flooding plains around the salar, are easily lifted and 

transported by wind. A significant part accumulates on the salar, leading to the coverage of the 

bright salt crust with a fine dust layer. Salt efflourescents at polygon borders then retain the 

particles blown along the salt surface and support the enrichment of fine-grained material. Due 

to the complete drying-up of the waters covering the flooding plains at the end of the austral 

summer, it should be assumed that lithium containing salts precipitate, leading to elevated 

concentrations in superficial salts and adhered to sediment particles. 
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3.3 Processes of enrichment 

Considering the amounts of lithium added by each of the previously introduced possible 

sources, magnitudes are too low in order to produce brines with several grams of lithium per 

litre. Hence, enrichment mechanisms must be present for the concentration of the element 

over geological time spans. Further, the inhomogeneous distribution of lithium along the salt 

lake shows, that selected enrichment mechanisms are limited to certain regions and do not 

take place ubiquitously. Following, the most important processes of brine and solute, especially 

lithium, concentration are presented. 

3.3.1 Evaporative concentration 

An important component of the hydrological cycle is the loss of water from sediments, soils 

and water surfaces. Studies on evaporation from different types of halite crust at the Salar de 

Atacama showed very low evaporation rates of about 2 mm per year (Kampf et al. 2005, 

Mardones 1998). However, the Salar de Atacama crust is characterized by a densely 

cemented crust without visible openings in the surface structure. Thorburn et al. (1992) report 

evaporation rates in the range of 230 mm/year for salt crusts and found a logarithmic trend of 

increasing evaporation rate with decreasing depth of the brine table. Beside that, evaporation 

on a salt crust is controlled by a variety of factors as air humidity and temperature, morphology 

of the crust, and intensity of solar radiation. At the Salar de Uyuni, the evaporation of water 

from the brine table during the dry season is impeded by the formation of a densely cemented 

salt crust. At that time, evaporation is limited to superficial openings as shrinkage cracks and 

holes in the crust. Large parts of the Salar de Uyuni are covered by polygonal structures, 

whereby the margins of the polygons are characterized by the formation of efflorescences 

resulting from evaporation along those structures. 

Due to its high solubility, lithium concentrates in the residual fraction during evaporation, 

whereas other alkalis as sodium, potassium or calcium as earth alkali element are removed 

from solution to a large extent by forming evaporate minerals. 

3.3.2 Sorption on clay minerals 

Sorption of lithium to clay minerals and ion exchange reactions have been investigated for 

long. Extensive studies in the field of lithium sorption have been done with tuff from the Yucca 

Mountain in Nevada (Anghel et al. 2002, Newman et al. 1991). Research was done in the 

background of a possible utilization of the mountain complex as a nuclear waste repository, 

and lithium served as a reactive tracer. Anghel et al. (2002) showed correlation between lithium 
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sorption and Li-specific ion exchange on smectite in the tuff rock, and Newman et al. (1991) 

verified the reversibility of lithium sorption up to solution concentrations of 150 mg/L Li+. The 

cation selectivity in ion exchange reactions depends on the valence, hydration energies, 

hydration radii and polarizability of the exchanged cation (Anderson et al. 1989). The order of 

replaceability is reflected by the Hofmeister or lyotropic series (Carroll 1959): 

𝐿𝑖+ < 𝑁𝑎+ < 𝐾+ < 𝑅𝑏+ < 𝐶𝑠+    and    𝑀𝑔2+ < 𝐶𝑎2+ < 𝑆𝑟2+ < 𝐵𝑎2+ 

Lithium, with a valence of 1, a high hydration energy, very low polarizability and a large 

hydrated radius should be the least preferred cation for exchange. On the other side, it should 

be the ion being most easily replaced to other ions in clay minerals. Lithium shows the 

tendency to become dispersed in the clay-mineral fraction of rocks during weathering 

processes and the deposition of fresh- and brackish-water river and stream sediments 

(Horstman 1957, Tardy et al. 1972). Glanzman et al. (1978) found high concentrations of lithium 

in fluviatile lacustrine sediments of the McDermitt caldera, USA. He suggested that the element 

origins from volcanic material and was incorporated into the clay layers during alteration 

processes. Indeed, Starkey (1982) proposed that the occurrence of lithium in clay minerals 

results from the inclusion of the element along with Mg2+ during clay formation by precipitation 

due to weathering, or its addition to the clay mineral structure during hydrothermal alteration. 

Vine (1980) states, that hydrothermal lithium-clays such as hectorite are often located in basins 

that are coevally containing lithium brines, suggesting a strong connection. The amount of 

lithium incorporated in clay minerals depends on several conditions, as the concentration of 

lithium in solution, the content of other ions, pH, temperature, and crystal structure of the 

involved clay minerals. 
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4 Methods 

The intensive study of the geochemical characteristics of the Salar de Uyuni required the 

sampling of large amounts of fluid and solid material, a broad range of analytical approaches 

and the support of field and laboratory methods by the use of modeling software and remote 

sensing techniques. Between 2009 and 2014, altogether six drilling and sampling campaigns 

took place on and in the vicinity of the Uyuni and Coipasa salt lakes (Fig. 12). 

 

Fig. 12: Time line of field campaigns at the Salar de Uyuni organized by TUBAF and UATF 

Drillings in 2009 and 2010 served for the installation of wells on the Salar de Uyuni, which were 

used for the sampling campaigns in the following years. Hundreds of brine, sediment and rock 

samples could be gained throughout the fieldwork in cooperation between the TUBAF and the 

UATF.  

4.1 Field works / methods 

On-site activities comprised preparative works as the realization of drillings with different 

drilling machines, well completion, measurement of on-site parameters, and finally sampling 

of brines, streams, rocks and sediments. Below, these steps are described in detail.  

4.1.1  Drilling procedure and well installation 

Core drillings at 11 locations on the Salar de Uyuni were performed using a rotary hand drill 

DK32S from DIAMASA (Handbohrtechnik GmbH & Co. KG., Grimma, Germany) customized 

for the local operating conditions (Fig. 13). Using a 64 mm plate drill bit with core retainer salt 

cores of 62 mm diameter could be gained. The electricity for the drilling machine was 
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produced by a 5.5 kW gasoline driven generator (HONDA). An elaborate description of the 

drilling machines’ technical characteristics can be found in Sieland (2014). The interstitial brine 

served as drilling fluid and was pumped from a nearby shallow basin which was excavated for 

that purpose. The maximum drilling depth was limited to 12-13 m, caused by the difficulties 

arising from the increasing weight of the bore rods with depth together with the challenge of 

drilling in muddy sediments. Drilled core pieces were spread on plastic tarps, measured and 

documented and dried several days in the sun, 

before they were packed in plastic sheets and 

PVC tubes for the transport to Germany. For the 

stabilization of the borehole and depth dependent 

brine sampling boreholes were completed to 

wells. Due to time and money restrictions this was 

performed by inserting PVC casings (waste-water 

tubes) and self-made screens (by slotting tubes 

with a disk grinder) at the lowermost meter. When 

the drilling ended in a mud layer, the screen was 

arranged for 1 m in the salt crust above the mud 

zone. The slots had a width of 1 mm. The annulus between the screens and casings and the 

borehole wall was filled up with filter gravel and salt grit, respectively. For that purpose, gravel 

from a nearby desiccated stream bed was sieved to a size of 2-4 mm. The zones of clayey 

lacustrine deposits were filled up with clay provided from a nearby clay pit. The original chunks 

of clay were crushed, sieved and mixed with fresh water to prepare a clay mud. An exact 

description of the well casing can be looked up in Schmidt (2010), an illustration is found in the 

appendix (Fig. B - 2). 

Altogether 11 drilling locations are scattered over the Salar de Uyuni in order to gain information 

from the whole salt lake (Fig. 15). At each location, 

either one (single well) or 4 - 5 boreholes (multiple wells, 

denoted as A...E) were drilled and completed to wells as 

described above. The distance between the wells at a 

multiple wells field was between 2 and 5 m, depending 

on the need for the likewise performed pumping tests. 

The distribution of wells for brine sampling at SLT-10-

PES is shown in Fig. 14. 

Fig. 13: Core drilling with a hand drill using 
 the pore brine as drilling fluid 

Fig. 14: Drilling site SLT-10-PES with 
 wells 
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Fig. 15: Distribution of drilling locations in the investigation area with single and multiple sampling 
 wells, and shallow drillings along transects 

The filter depth of wells in multiple well fields varied in order to enable a depth dependent brine 

sampling, however, screens were always arranged in a salt layer. Table 2 shows the 

geographic coordinates of drilling locations, together with the salt aquifer zone and screening 

(=sampling) depth of each well. The arrangement and specifications of drill holes at all drilling 

sites and the exact characteristics of the wells can be found in Sieland (2014). 

Table 2: Overview of drilling locations on the Salar de Uyuni with geographic position and screened 
 depth of the wells 

Name 
Coordinates (UTM, 

WGS 84) 
Brine sampling depth [m] 

 longitude latitude A B C D E 

SLT-01-COL 679816 7774574 
 

4.5 – 5.5 7.0 – 8.0 6.4 – 7.4 2.0 – 3.0 

SLT-02-LLI 601596 7791495 0.3 – 1.1 8.0 – 9.0 2.8 – 3.8 0.8 – 1.8  

SLT-03-INC 649792 7749641 2.5 – 3.5 3.5 - 4.5 4.3 - 5.3  1.5 - 2.5 

SLT-04-YON 590267 7745962 6.9 - 7.9     

SLT-05-TAH 635275 7797122 0.0 - 0.7 0.0 – 0.7 0.0 - 0.6 2.8 - 3.6  

SLT-06-NOR 669422 7811071 0.2 - 0.9 2.8 - 3.8 1.8 - 2.8 0.8 - 1.8  

SLT-07-SAL 694556 7742079 7.1 - 8.1     

SLT-08-CEN 649590 7774480 7.5 - 9.5 3.8 – 4.8 1.8 – 2.8 4.5 – 5.5  

SLT-09-RÍO 666568 7720469 2.0 - 3.0 1.5 - 2.5 2.8 - 3.8 0.7 - 1.7  

SLT-10-PES 625383 7777770 5.0 - 6.0     

SLT-13-COR 663551 7788958 5.1 - 6.1     

Single well 

Multiple (4-5) wells 

Shallow drill hole 
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Auger drillings to depths of 0.5 m were performed with a Bosch drill hammer (GBH 2-26 DRE) 

using a 45 cm long drill bit with a diameter of 25 mm (Fig. 16, left) to tap brine samples from 

the uppermost brine level. No flushing with a drilling fluid was needed. In cases of a densely 

cemented salt surface or where the brine table was more than 0.5 m below the surface, a small 

hole was dug with a pickaxe in order to continue the auger drilling in the hole. In preparation 

of brine sampling procedure, drill holes were cleaned from drill sludge by air lift with the help 

of a bellows foot pump. For that purpose, a short hose was connected to the pump and inserted 

into the bore hole (Fig. 16, right). Applying this procedure, the largest part of mud and salt 

detritus could be removed. The sampling pattern of auger drills is shown in Fig. 15. Points were 

arranged along transects and complemented by points close to the shore. The distance 

between points ranged from 1 to 2.5 km. Several planned spots could not be sampled due to 

a thin upper salt crust, underlying soft mud and year-round moisture, which impeded the 

access by car. The same applied for the Salar de Coipasa, which was only partly traversable 

because of the decreasing thickness of salt cover. That’s why, sampling was limited to 5 points 

along a transect, with a distance of 2 km between the single points. 

 

Fig. 16: Auger drillings with a Bosch drill hammer (left) and using air lift for cleaning the bore hole 
 from drill sludge  
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4.1.2  Sampling and field measurements 

Sampling took place at various locations on the Salar de Uyuni and its surrounding, and 

comprises brines, water from tributaries, springs and wells, inner lake salt crusts and lacustrine 

sediments, as well as rocks and sediments from the salt lakes’ catchment. An overview of 

sampling sites including coordinates is found in Table A - 3. 

Brines 

Brine from the installed wells was sampled by means of a submersible pump (Comet Geo-

Duplo Plus) run by means of a commercial car battery. For ensuring representative samples, 

the pumped brine was discarded until the fluid was clear. Additionally, the volume of the screen 

was pumped off several times and until a constant flow was maintained. Hydraulic short-circuit 

was avoided by heading the extracted brine with a hose to a distance of a least 5 m from the 

sampling well. Brines from the auger drills were taken by means of a 100 mL PP-syringe 

(Omnifix) connected to a thin hose. The parameters pH, electric conductivity (EC), redox 

potential, oxygen content and water temperature were determined after obtaining stability of 

these values. For these measurements, the brine was pumped directly into a small plastic 

vessel; the continuous overflow guaranteed flow-through conditions and prevented 

contamination with ambient air. The parameters pH, EC and oxygen content were obtained 

with the portable multimeter device HQ40d from HACH. For dissolved oxygen, the luminescent 

probe IntelliCAL LDO101 was used, where a calibration is not necessary. The optional salinity 

correction was set off, due to the exceedance of the salinity range. Thus, obtained values were 

corrected manually afterwards, using TDS and temperature specific correction factors (see 

chapter 5.4.3). An IntelliCAL PHC301 glass electrode served for pH measurement, whereby a 

daily calibration was done with buffer solutions of pH 4 and pH 7. Electric conductivity was 

obtained by an IntelliCAL CDC401 standard conductivity probe, using 3 molar KCl for 

calibration. Temperature correction was done internally by the HACH device. The electromotive 

force (EMF) was measured with the device WinLab Data Line pH-Meter (Windaus 

Labortechnik) connected to an Ag/AgCl electrode containing 3 molar KCl. A daily calibration 

with a redox buffer was performed. The EMF value was converted to the redox potential EH by 

the following steps:  

1. Calculation of EMFcorr by correction according to the value of the reference standard 

solution 

2. Calculation of E0(25°C) by referring the EMFcorr to standard temperature of 25°C 

3. Calculation of EH by referring to the standard hydrogen electrode 
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Temperature was measured from each of the probes, except redox. Brine temperature was 

then calculated as the mean from these values. 

Samples were taken directly from the flow-through container after flushing the vessels with 

sampling fluid. Samples for IC and TIC were stored untreated, whereas samples for ICP-MS 

(a few mL were sufficient) were filtrated with syringe filter holders (cellulose-acetate, pore size 

0.2 µm) and acidified to a pH < 2 with 65% HNO3 suprapur. All brine samples were kept in PE 

bottles at ambient temperature, due to lacking cooling capabilities and the unlikelihood of 

microbial influence on the chemical composition of the highly saline brines. 

Streams and thermal springs 

Several streams and small inlets to the Salar de Uyuni were sampled during the 2014 field 

campaign. Further, the main tributaries Río Grande de Lipez and Río Colorado were sampled 

in different years to gain knowledge about the seasonal change in chemical composition. In 

addition, different thermal springs were sampled. Waters were measured for field parameters 

and samples were treated as described for the brines. 

Rocks 

Rock sampling took place in the catchment of the Salar de Uyuni in order to investigate host 

rocks as sources for the leaching of lithium. The volcanoes Irruputuncu, Olca and Uturuncu in 

the vicinity of the Salar de Uyuni were subject to sampling procedure (Fig. 17). Rock samples 

were stored and transported in plastic zipper bags. Coordinates of sampling sites are given in 

Table A - 15. 

Uturuncu (6,008 m a.s.l.) 

The dormant stratovolcano Uturuncu (22°15’S; 67°11’W) is located in the Cordillera de Lipez, 

about 150 km south of the Salar de Uyuni. It is composed of porphyritic dacite lava flows and 

domes and was active during Pleistocene times. Today, fumarolic activity occurs. Dacite lavas 

and andesite inclusions show a high content of incompatible trace elements, which could be a 

hint for a potential lithium source. Large-scale magma intrusions into the Altiplano-Puna crustal 

magma body lead to a huge deformation field underneath the volcanic complex with a central 

uplift rate of 1-2 cm/a at recent times (Sparks et al. 2006). The Río Grande de Lipez flows 

along the western side of Uturuncu and receives inflows from smaller streams at the western 

flank of the volcano. 

Irruputuncu (5,165 m a.s.l.) 

The stratovolcano Irruputuncu (20°45‘S; 68°34‘W) at the Bolivian-Chilean border is part of the 

Andean Central Volcanic Zone. It is a composite type and the volcanic complex is located on 
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top of ignimbrite layers of the Ujina and Pastillos formations (Rodríguez et al. 2015). Volcanic 

activity producing andesitic to trachy-andesitic magmas dates back to Pleistocene and 

Holocene times and active fumaroles exist until today, leaving sulphur deposits in the crater. 

Geothermal activities with temperatures up to 220°C in deep reservoirs at the base of the 

volcano were detected during geothermal prospections (Aravena et al. 2016). 

Fig. 17: Locations of rock sampling: north-western side of volcano Uturuncu, crater of volcano 
 Irruputuncu, and south-eastern side of Irruputuncu (from left to right; photographer: Wolfram 
 Canzler) 

Olca (5,407 m a.s.l.) 

The stratovolcano Olca (20°56’S; 68°29’W) is as well located at the Bolivian-Chilean border, 

in the western part of a 15 km long E-W lineament of stratovolcanoes. It is mainly composed 

of andesitic to dacitic lava flows with volcanic debris and shows fumarolic activity at the crater. 

Drillings at the base of the volcano revealed a zone of smectite and illite clays and the existence 

of hot water aquifers up to 70°C (Reyes et al. 2011). A hydrothermal spring exists at the base 

of the volcano, which was also sampled. 

Sediments 

Fluvial and lacustrine sediments play a significant role in the enrichment of lithium in pore 

brines, as they serve as carrier, repository and source of lithium during its way from the source 

bedrock over streams to the final place of deposition. Therefore, various sediment samples 

were gained at the main tributaries Río Grande and Río Colorado (Fig. 18). Lacustrine mud 

layers were sampled from different depths at various spots of the salt flats of Uyuni and 

Coipasa. Further, sediment from the gas emanation spot “Ojos del Salar” (Eyes of the Salar) 

was taken. In addition to rock sampling, sediment samples were taken from the catchment, at 

the base and the flanks of the described volcanoes. 
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Fig. 18: Sediment sampling sites: (a) Río Colorado, (b) sampling of shore sediment at Río Colorado, 
 (c) Río Grande, (d) sampling from auger drill hole at SLT-NOR-T3, (e) lacustrine brownish 
 layer at SLT-RIO-01, (f) lacustrine black coloured layer at SLT-RIO-01, (g) sampling of 
 reddish sediment at the “Ojos del Salar” 

Salt crust 

During the field campaign in 2014 two types of samples were taken from the Salar’s upper salt 

crust: the uppermost 1 – 5 mm salt precipitate within the salt polygons, and the salt 

efflorescences at the polygon border (Fig. 19). Samples were taken at 23 spots of the Salar 

de Uyuni and Coipasa, whereby the locations coincided with drilling and auger drill sites (see 

Fig. 15). At most locations, the salt surface was covered with a fine layer of dust, which was 

especially distinct in the dry season of 2014, compared to the years before. Salt efflorescences 

further indicated the main wind direction, as they accumulate the windblown dust on the 

windward site. 

 

Fig. 19: Sampling of the uppermost salt crust at the Salar de Uyuni; A: at a transect point in the north 
 (STL-NOR-T3); B and C: at SLT-01-COL 

C A B 
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4.2  Laboratory methods 

The processes of lithium enrichment in the salt lake brine were investigated using different 

analytical methods. Laboratory methods included the preparation of solid samples by means 

of various types of chemical digestion, the analysis of isotopes and finally the element analysis 

by ion chromatography and ICP-MS. 

4.2.1 Chemical digestion 

In order to determine the chemical composition of lacustrine and fluvial sediments, the salt 

crust and rocks, a chemical digestion was indispensable. In dependence of the specific 

characteristics, for each sample type an adjusted procedure routine was developed. An 

overview of applied methods is given in Fig. 20. 

Sediments and rocks 

First, sediment samples were homogenized. In order to minimize the influence of secondary 

salts that precipitated from the interstitial brine after sampling, an equivalent of the sample was 

washed several times with DI (deionized water) and filtrated. Afterwards, washed and 

unwashed sediments were dried overnight in a drying oven at 40°C. Rock samples were 

prepared by coarse grinding with rock splitter and hammer. Then, both rocks and sediments 

were grinded with a planetary ball mill using agate vessels and balls (Pulverisette 5, Fritsch 

GmbH) down to a size of < 63 µm. The samples were milled 60 min at a rotational speed of 

280 rpm. Lithium is bound in soil components and minerals in different ways, leading to a 

difference in leaching effectivity by weathering in different rock types and sediments. In 

dependency of the integration of lithium in the crystal lattice of silicates two types of digestions 

were performed. For the quantitative investigation of the easily available lithium fraction (bound 

for example in clay minerals), a modified aqua regia digestion was performed: in the 

environment of a closed microwave, concentrated HNO3 reacted with the 3-fold amount of HCl 

(Zeien 1995): 

𝐻𝑁𝑂3 + 3 𝐻𝐶𝑙 ⟶ 𝑁𝑂𝐶𝑙 + 2 𝐶𝑙 + 2𝐻2𝑂 (1) 

The microwave ETHOS.lab from MLS GmbH was used. The procedure was following a certain 

temperature time schedule consisting of: 

10. Constant heating of 8 min until a temperature of 190°C,  

11. Maintaining temperature for 6 minutes, 

12. Cooling down for 20 minutes. 
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The hermetically closed system ensures leakage prevention of lithium or other volatile 

elements. The Teflon sample containers were filled with 100 µg grounded sample, then 200 µL 

DI, 900 µL 65% HNO3 and 300 µL 37% HCl were added. A blank for every series was used for 

correction of background values. After digestion, samples were filled up with DI to a dilution 

factor of 10, and centrifuged prior to ICP-MS measurement. 

 

Fig. 20: Flow chart of preparation and analysis of rock and sediment samples for the determination of 
 different lithium fractions 

The lithium fraction bound in a siliceous matrix was determined by a total digestion with 

hydrofluoric acid. Therefore, 100 µg grounded sample was mixed with 3 mL of 48% HF, 2.5 mL 

of HNO3 and 0.5 mL DI in a capped Teflon container. Equipped with an agitator, the reaction 

fluid was stirred and heated up to 60°C in a water bath when needed. In case that the sample 

was not decomposed completely, more HF was added and reaction time was increased. For 

every series, a blank was measured concurrently. After digestion 5 mL reaction fluid was mixed 

with 40 mL DI to prevent reaction with the material of the centrifuge tubes, which were used 

for storage. For ICP-MS measurements, samples were further diluted to final dilution factors 

of 350-500, in order to prevent the ICP-MS from damage by high HF concentrations.  
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Salt crust 

Samples were homogenized and pulverized in a mortar, dried for 24 h at 80°C in a drying oven 

and weighed to portions of 3 g into 50 mL centrifuge tubes. Immediately after weighing, 30 mL 

DI was added and the complete salt dissolution was awaited. After centrifugation and 

determination of pH a small part was put aside for ion chromatographic determination. The rest 

was subject of vacuum filtration and the weight of the residue was determined after drying of 

the filter. Filtrates were analyzed by IC and ICP-MS with dilution factors of 100 and 1000, 

respectively. 

4.2.2 Element analysis 

IC 

Ion chromatography (IC) enables the determination of the main cations Li+, Na+, K+ and Mg2+ 

and the anions Cl- and SO4
2-. The detection of Ca2+, NO3

-, F- and Br- in the brines was not 

possible by this method due to their low concentrations in the diluted samples. Values were 

below detection limit or peak overlap occurred. Ca and Br concentrations were thus taken from 

ICP-MS results. Cation detection was performed with the device 850 Professional IC Cation 

(Metrohm) using a Metrosep C4 (150x4mm) separation column. The eluent was composed of 

2 mM HNO3 and 0.7 mM Dipicolinic acid, the flow rate amounted to 0.9 mL/min. Anions were 

detected using a 881 Compact IC Pro (Metrohm). Here, a mixture of 3.0 mM NaHCO3 and 3.5 

mM Na2CO3 served as eluent with a flow rate of 1.0 mL/min. Eluents of both cation and anion 

chromatography were aerated with nitrogen prior to usage to remove dissolved gases and 

other disturbing substances. For the evaluation of peaks, the software MagIC Net 2.2 by 

Metrohm was used. In dependence of the ion to be measured, brines were diluted with factors 

of 500 to 2000, because the maximum electrical conductivity of the device is 900 µS/cm. For 

anion analysis, deionized water (DI) was used for dilution; for the measurement of cations 2 

mmolar HNO3 served as dilution fluid. Due to the high dilution brines were not filtrated before 

analysis. Stream waters were measured with dilution factors up to 10, and were filtrated with 

0.2 µm cellulose-acetate filters. 

ICP-MS 

ICP-MS (inductively coupled plasma mass spectrometry) measurements were performed for 

the determination of a broad range of elements, whereat low concentrated components in the 

samples are typically analyzed best with this method. An X Series 2 (Thermo Scientific) was 

used for this purpose. Elements were measured either in standard or KED mode (kinetic 

energy discrimination), whereby latter uses a different carrier gas mixture of 93% He and 7% 

H2 instead of Ar. An overview of the 65 obtained elements and detection limits is summarized 
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in Table A - 9. A standard calibration was performed for quantification using a multi element 

standard in different dilutions. The recovery rate was determined by the 1:100 addition of an 

internal standard composed of 50 ppb Ge, 10 ppb Re and 10 ppb Rh. Brine samples (filtrated 

and acidified in the field) and the dissolved salt crust samples were diluted with factors of 100 

to 1000, in order to cover the broad concentration range of elements, and to prevent an 

instruments’ damage by electrical conductivities exceeding 2 mS/cm. Streams were measured 

undiluted to 1:10, depending on the expected concentrations. Digested rock samples were 

diluted with dilution factors of 300 to 400 in order to reduce the HF concentration to < 0.01%, 

as required for the ICP-MS procedure. 

Total inorganic content 

For the analysis of total inorganic content the elemental analyzer LiquiTOC 

(Elementaranalysen Systeme GmbH) was utilized. A dilution factor of 10 was used. The 

infrared channel 1 (IR-1) and an injection volume of 10 mL was applied. Prior to analysis, 

samples were acidified with H3PO4 in order to transform all carbonate species into CO2. The 

resulting TIC values were converted into HCO3
- by using PhreeqC (Parkhurst and Appelo 

1999). Due to high concentrations (up to 92 mmol/L) of boric acid (H3BO3) the classical 

determination of alkalinity by titration with an acid results in a massive overestimation of 

alkalinity. 
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4.2.3 Mineralogic composition 

Rocks, sediments and salts were analyzed by digestion and determination of the elemental 

composition by ICS-MS. The mineralogical composition was calculated by means of 

geochemical calculation rules. For rocks and sediments, results from ICP-MS were 

transformed to weight proportions 𝑐𝑠𝑒𝑑 [mg/kg] by the following formula: 

 𝑐𝑠𝑒𝑑 =
𝑐 ∗ 𝑉

𝑚
 (2) 

where c [ppm] is the element concentration in the sample, and V [mL] and m [g] are the initial 

volume and sample weight. For rocks, element concentrations were converted to 

corresponding oxides (e.g. Si  SiO2, Al  Al2O3) by multiplying with a factor f, which is 

calculated for different oxides according to the following relation: 

 𝑓 =
𝑀𝑜𝑥𝑖𝑑𝑒

𝑀𝑒𝑙𝑒𝑚𝑒𝑛𝑡
 (3) 

where 𝑀𝑜𝑥𝑖𝑑𝑒 [g/mol] defines the molar mass of the oxide and 𝑀𝑒𝑙𝑒𝑚𝑒𝑛𝑡 [g/mol] the molar mass 

of the contained element. For calculation the results of HF digestion were used, as the 

extraction includes the siliceous species. Then, the normative mineralogical composition was 

calculated from the chemical rock analysis using the CIPW norm. This norm uses the bulk 

composition of a rock for the calculation of typically occurring mineral phases that could 

theoretically have formed during the complete crystallization of a magma at low temperature. 

It is therefore especially suitable for the differentiation of volcanic rocks. The calculation was 

done in an excel spreadsheet6. The results were then used for the classification of sampled 

rocks in a Streckeisen diagram. This double ternary diagram is used for the differentiation of 

igneous rocks, in this case volcanic rocks, according to their modal mineralogical composition. 

Thereby, only the four mineral groups quartz, alkali feldspars, plagioclase and feldspathoid 

(Foid) are included in the calculation. 

4.2.4  Isotope analysis 

The use of environmental isotopes helps to find answers for numerous questions regarding 

catchment hydrogeology. This includes the analysis of weathering processes mobilizing 

solutes along the flow path, the identification of sources of solutes, the characterization of water 

flow paths from the time of precipitation until discharge at streams, and the analysis of the role 

                                                
6 The excel file was downloaded from https://www.geologynet.com/programs/cipwnormexcel.xls 

(22.05.2017) 
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of atmospheric deposition in final water chemistry (Kendall & Caldwell 1998). Stable isotopes 

of water and dissolved sulphate as well as instable isotopes of carbon were investigated during 

the work. 

Stable isotopes 

δ2H and δ18O in water, and δ34S and δ18O in dissolved sulphate were determined for brine and 

river water samples from the 2009 and 2010 field campaigns. Water isotopes were analyzed 

by cavity ring-down spectroscopy (CRDS) at the UFZ in Halle. As the instrument requires EC 

values of less than 4 mS/cm in the analyte, samples had to be preprocessed with vacuum 

distillation. The measurement itself was done with a Picarro L1102-I Isotopic Liquid Water 

Analyser. Two reference standards, PES (polar ice shavings) and MAST (mid-atlantic ocean 

water), were used for calibration. The procedure of sample preparation, distillation and final 

analysis is described in detail in Heinrich (2012). For the determination of δ34S and δ18O in 

dissolved sulphate BaSO4 was precipitated from the water sample after acidification and 

addition of BaCl2. The analysis was done with an isotope ratio mass spectrometer (IRMS) 

DeltaS from Thermo Finnigan, which is based on the continuous-flow technique. Results of 

δ34S were reported in relation to the reference standard VCDT. For δ18O measurements, values 

were calculated according to the standard VSMOW (Vienna Standard Mean Ocean Water). 

Standard deviations were ± 0.3% for δ34S and ± 0.5% for δ18O, respectivally. A detailled 

description of analytical procedure is found in Heinrich (2012). 

Radiocarbon dating 

Brine samples from wells representing different depths and locations on the Salar de Uyuni 

were prepared for radiocarbon dating by means of vacuum extraction. For that, 10-15 mL of 

65% H3PO4 was added to about 1 L of sample, and dissolved carbon species were extracted 

and transferred into CO2. The gas was trapped in special glass vials, which were previously 

flushed with ultra-pure N2 and evacuated to -980 mbar with a vacuum pump. Ampules were 

closed by a valve when a final pressure of -250 mbar was reached, and sealed by a glassmelt 

within few hours after extraction. Prepared samples were analyzed for 14C/12C and 13C/12C at 

the Poznań Radiocarbon Laboratory in Poland. An accelerator mass spectrometer of type 1.5 

SDH-Pelletron Model Compact Carbon AMS (National Electrostatics Corporation) was used 

for determination. For calibration, the international standard 14C Oxalic Acid II was used. The 

14C activity is determined by the decay of radiocarbon over time. Besides that, it is also affected 

by natural isotopic fractionation, i.e. the preferential uptake of 12C over 13C and 13C over 14C in 

biological processes. This fractionation is accounted for by using the 𝛿13𝐶 results of AMS 

measurements. The correction is based on the following formula (Stuiver & Polach 1977): 

 𝑎𝛿13𝐶 = 𝑎 ∙ [
1 − 25/1000

1 + 𝛿13𝐶/1000
]

2

 (4) 
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Here, 𝑎 defines the raw 14C activity and 𝑎𝛿13𝐶 the fractionation-corrected activity. Corrected 

values were used for age determination of the brines in the upper meters of the salt crust 

according to the equation: 

 𝑡 = −8,267 ∙ 𝑙𝑛 (
𝑎𝑡 𝐶14

𝑎0 𝐶14 ) (5) 

Here, 𝑎𝑡 𝐶14  corresponds to the 𝑎𝛿13𝐶 and 𝑎0 to the initial 14C activity, which is generally 

assumed to be 100 pmC. However, the 14C activity was not constant at 100 pmC during 

Pleistocene and Holocene, but steadily decreased with time, due to variations in solar output. 

Results were corrected using adapted values for the initial activity. 

4.3 Application of GIS 

Remote sensing data are a precious source of information, especially in extremely remote 

areas with limited possibilities for field observations. Elevation models and satellite data were 

used for watershed delineation and the spatial demarcation of solute contributions to the Salar 

de Uyuni. Further, a possible connection between the Salars of Uyuni and Coipasa was 

investigated by the identification of a former stream bed. Furthermore, the seasonal variability 

in water coverage was analyzed. For the evaluation of satellite data, the program ArcGIS 

(ESRI) was used. The program also provided the statistical tools for the interpolation of lithium 

concentrations in the brine. 

4.3.1 Watershed delineation 

Watershed delineation and terrain analysis were done using the ArcGIS extension tool 

ArcHydro 9 as topic of a bachelor thesis (Jackisch 2014). The first step comprised the choice 

of an appropriate DEM (Digital Elevation Model) dataset. 12 tiles of an SRTM (Shuttle Radar 

Topography Mission) dataset covering the southern part of the Bolivian Altiplano were obtained 

from the USGS EarthExplorer database7. Characteristics of the dataset are comprised in Table 

3. Tiles were connected to one file with the mosaic tool in ArcMap and re-projected to the 

coordinate system WGS 1984 world Mercator. A shapefile comprising streams and river 

networks of Bolivia and Chile was obtained from DIVA-GIS8, an open-source GIS project 

providing as well free spatial data for the whole world. The shapefile was matched with Landsat 

                                                
7 Access online via https://earthexplorer.usgs.gov/ 

8 Access online via http://www.diva-gis.org/Data 
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8 images with a resolution of 30 m, in order to verify the precision and completeness of stream 

lines in the vector shape. 

Table 3: Characteristics of the applied DEM dataset 

 SRTM dataset  SRTM dataset 

Coordinate system WGS 84 Pixel type and depth Signed integer, 16 bit 

Tile size 1 arc-second Uncompressed size 593 MB 

Cell resolution 28 m Format GeoTiff 

Number of cells 1.55*108   

Proceeding of watershed delineation using ArcHydro is shown in Fig. B - 3. Prior to catchment 

delineation, several steps were necessary in order to enhance the quality of data. The first 

step, DEM reconditioning, is the process of forcing a linear drainage pattern vector to a DEM 

surface, creating an enhanced elevation model with a higher agreement of stream networks 

delineated from the DEM and the input stream vector (Dixon 2016). The next step is the fill 

sinks tool, which locates depressions and no-data cells in a raster. It fills local sinks in a grid 

by modifying the elevation value, eliminating the error of water being trapped in a cell and thus 

being hindered from flow. 

For handling the partly extremely flat terrain on the particulary large area, two approaches were 

tested. The fill sinks plus tool, developed by the Lago Consulting group, promises to produce 

more realistic stream paths in flat terrain, but to keep the primary stream paths in steep terrain. 

Another approach is the optimized pit removal tool (Center for Research in Water Resources, 

University of Texas). By combining the methods of cut and fill, undesired pits are removed 

while the corresponding changes to the landscape are minimized. The next step builds up a 

flow direction dataset by calculating the direction to which water would flow out of a cell, based 

on the slope gradient in the cell (Jenson & Domingue 1988). Thereby, each cell is classified to 

a number, according to the direction of flow (Fig. 21). The simulation of flow direction from the 

8 directly neighbouring pixels is referred to as the D8 algorithm. 

 

Fig. 21: D8 algorithm for the encoding of flow direction to numbers according to the orientation of cell 
 x 
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The following flow accumulation step calculates for each cell in the input grid the sum of 

surrounding cells that flow towards it. The resulting flow accumulation grid serves for the 

computation of a stream grid by stream definition. Thereby, each cell is compared to a 

threshold, and either assigned to 1, when having a value greater than the threshold, or to no 

data, when being below the threshold. Then, catchments are delineated by assigning a value 

to each cell indicating to which catchment it belongs. The resulting grid is then converted to a 

catchment polygon feature class. Further steps of terrain pre-processing contain the 

generation of aggregated upstream catchments out of the catchment feature class and the 

creation of drainage points (ESRI 2011). Pre-processed spatial data can then be used for 

watershed delineation. 

4.3.2 Interpolation maps 

The distribution of lithium and other elements along the salars was done with ArcMap using 

the method of ordinary kriging. As data source, 92 points with lithium concentrations distributed 

all over the salar were used. Own analytical results were supplemented by brine analyses of 

Risacher (1991b), in order to add data to regions with low sampling density and locations which 

could not be accessed during sampling. Certain preconditions should be fulfilled for the 

application of kriging, as the normal distribution of data, the existence of stationarity and the 

absence of trends (Schafmeister 1999). The histogram of Li concentration data shows an 

asymmetric left skewed distribution. The check for normal distribution was done by means of 

the Shapiro-Wilk-Test using OriginPro. At the significance level α = 0.5, the null hypothesis of 

having normally distributed data was rejected. Hence, a logarithmic transformation was 

performed in order to reach normal distribution (p-value = 0.3 > α = 0.5, null hypothesis was 

not rejected). The analysis of the variogram showed, that a spherical semi-variogram best fitted 

the empirical variogram, and was therefore chosen for the kriging procedure. 

4.3.3 Seasonal variability 

The existence of an ephemeral or all-season superficial hydrological connection between the 

salars of Uyuni and Coipasa was investigated with the help of satellite and elevation data. First, 

meteorological data from the region were screened for years with precipitation-rich summers. 

Second, satellite data from the beforehand selected years were sighted for high-quality images 

without cloud coverage and errors. Band combinations were applied to the selected satellite 

images in ArcMap in order to improve the visibility of a superficial connection of the salt pans 

during the rainy season. The tool band composite in the data management tab served for that 

purpose. 
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The relation between the occurrence of all-season humid or water-covered areas of salt crust 

and the concentration of Li in brine was investigated by the evaluation of satellite images and 

interpolation maps. For that purpose, the Li distribution map as a result of kriging was used for 

drawing contour lines of Li concentration. This contour map was then plotted on a satellite 

image from the dry season in order to compare the overlay of humid areas and regions of high 

Li concentrations in brine. 

Another approach of using GIS was the analysis of lake water coverage during the rainy 

season. Due to strong winds, water is rapidly transported along the surface of the salt pan. 

This effects the distribution of solutes from the river deltas to distant regions, as the surface 

waters are exposed to evaporation and associated precipitation of salts. 

The growth or shrinkage of salt pan volume in recent times was analyzed by comparing the 

oldest available Landsat data from Jan. 1985 (Landsat 5) to new data from Jan. 2015 (Landsat 

8). The outlines were drawn in ArcMap, added as layers and compared in size. 

4.4 Quality control 

The results of hydrochemical analyses were evaluated by means of common procedures. For 

the chemical analysis of waters and dissolved salt samples the analytical error (comparing 

sum of anions and sum of cations) was calculated by PhreeqC (Parkhurst & Appelo 1999). 

Detection limits for ICP-MS and IC were determined by the detection limit of the devices 

multiplied by the dilution factor. Negative values and values below the threshold were excluded 

from any further evaluation. 

A number of elements (i.e. Li, K, Mg) were measured with IC as well as with ICP-MS. Results 

of both methods were compared regarding accuracy, detection limit and dilution factor, in order 

to select the most appropriate method for the analysis of these brines with a high excess of Na 

and Cl. 

Special emphasis was put on the analytical challenges regarding the investigation of extreme 

brines and the associated adaption of sample preparation and analytical devices. The electrical 

conductivity of the salar brines usually exceeded 200 mS/cm, which is the upper limit of the 

used Hach HQ40D EC-meter. To check the reliability of values > 200 mS/cm displayed by the 

instrument, three brine samples from the Salar de Uyuni were diluted stepwise with distilled 

water. Results were compared with the dilution curve of a saturated NaCl solution provided by 

Lide (1994). With increasing salinity, the oxygen solubility decreases. For correction, salinity 

correction factors fcorr were obtained from the USGS salinity factor table (Rounds et al. 2013), 

which was extended to the point of salt saturation based on Nishri & Ben-Yaakov (1990). 

Measured O2 concentrations were then transformed according to the following formula: 



Methods 

 

43 

 

 𝑂2𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
[
𝑚𝑔

𝐿
] = 𝑓𝑐𝑜𝑟𝑟 ∙ 𝑂2𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

[
𝑚𝑔

𝐿
] (6) 

Piston-stroke pipettes, which were used for the dilution of brine samples, are adjusted to 

pipetting solutions with a density of 1 g/cm³. For the evaluation of pipette precision, a pipette 

test according to DIN EN ISO 8655-6 with the brine having a density of ~1.2 g/cm³ was 

performed. 

The correctness of analytical data produced by IC and ICP-MS instruments was checked by 

the determination of precision and accuracy. Precision was calculated by the repetitive 

measurement of a single sample under the same analytical conditions; results are shown as 

standard deviation. Accuracy was tested by the measurement of a lithium standard in the 

concentration range, which was expected for the samples. The standard was repeatedly 

measured during the analytical series. Furthermore, samples from the 2010 field trip were 

determined as duplicates by the laboratory of the hydrogeology department at TU 

Bergakademie Freiberg and the analytical department of the BGR in order to prove the 

comparability of different analytical approaches. 

The calculation of saturation conditions and the modelling of evaporation processes were 

performed using the program PhreeqC (Parkhurst & Appelo 1999) using the database 

PHRQPITZ, which includes PITZER parameters based on the ion-interaction theory and is 

suitable for ionic strengths from 1 to 6 mol/L (Plummer et al. 1988). 
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5 Results and interpretation 

In order to obtain an extensive and widespread insight to the hydrochemical and 

hydrogeological conditions of the Salar de Uyuni and its vicinity, a broad range of methodical 

approaches and analytical techniques was applied. Brine, freshwater, rock, sediment and salt 

sampling and the chemical analysis of samples regarding element and isotopic composition 

was complemented by the evaluation of satellite and elevation data using GIS. Subsequently, 

results from all fields of investigation are presented and supplemented by literature data when 

needed. 

5.1 Hydrochemical characterization  

Altogether 112 brine samples from screened wells and 45 brine samples from the shallow 

drillings were taken during the field campaigns between 2009 and 2015 at the Salars of Uyuni 

and Coipasa. Further, 22 water samples from tributaries and springs in the catchment of the 

Salar de Uyuni complement the hydrogeological characterization of the region and the 

investigation of lithium entry paths. Results of chemical analyses are given in tabular form in 

Table A - 4 to Table A - 9. For evaluation, small streams were separated from the main inflowing 

rivers (Río Grande and Río Colorado), due to extensive hydrochemical differences. An 

overview of brine sampling sites is shown in Fig. 15, the locations of freshwater samples from 

the catchment are illustrated in Fig. 43. 

According to the classification of Drever (1997), streams and rivers contributing to the Salar 

are fresh to brackish, showing TDS values between 60 ppm in small streams near the spring 

up to 5.000 ppm in the Río Grande and Río Colorado near their outlet to the Salar. Interstitial 

brines have dissolved loads between 260 and 360 g/L. Values in the brines taken from wells 

(well brines) are slightly higher than in the transect brines, which is probably caused by the 

dilution effect by surficial and subsurface inflow of lower mineralized waters due to the low 

distance to the shore. Brines are invariably NaCl types with the relative abundance in the 

quantity of constituents in the following order: Na+ >> K+ = Mg2+ > Li+ > Ca2+ and Cl- >> SO4
2- 

> HCO3
-. Between 70 and 95% of dissolved solids is NaCl, so that the brines are in the range 

of saturation for halite (solubility of halite in demineralized water = 358 g/L at 20°C). No 

correlation exists between TDS and brine temperature, because the solubility of NaCl is not 

appreciably affected by a change in temperature.  
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5.1.1 Field parameters 

Fluid temperature, electric conductivity, redox potential and dissolved oxygen content were 

obtained in the field during the sampling procedure. The TDS was calculated as the sum of all 

inorganic substances in solution, as determined by IC and ICP-MS. The values for the well and 

transect brines are comprised in Table A - 7, values for water samples from the catchment are 

comprised in Table A - 4. Statistics are shown in Table 4. 

Table 4: Number of observations (n), minimum, mean and maximum values of field parameters and 
 TDS from the obtained pore brines of the Salar de Uyuni, and the water samples from the 
 catchment (n may account for multiple sampling in different years; *salinity-adjusted values) 

 Temp. pH EC Eh O2*  TDS 

 °C  mS/cm mV mg/L g/L 

  (25°C) (25°C) (25°C)   

wells       

n 105 105 105 99 105 112 

min 4.6 6.7 184 -171 0.028 289 

max 20.7 7.8 245 160 1.68 362 

mean 10.7 7.0 221 -49.2 0.28 328 

transects       

n 44 44 43 44 20 45 

min 5.5 6.4 176 -137 0.042 262 

max 22.0 7.3 240 354 0.85 349 

mean 14.9 6.9 222 15.6 0.35 318 

rivers       

n 6 7 7 5 6 7 

min 7.0 8.1 3.0 213 6.2 1.73 

max 18.8 8.6 7.5 411 8.2 4.39 

mean 12.6 8.4 4.3 293 7.2 2.65 

streams       

n 6 10 10 6 6 11 

min 0.6 7.4 0.09 177 6.09 0.06 

max 23.9 8.98 2.9 374 8.82 1.73 

mean 12.8 8.2 0.98 256 7.30 0.77 

springs       

n 4 4 4 4 4 4 

min 16.2 5.5 1.57 137 1.23 1.13 

max 40.1 7.7 10.4 295 4.94 5.31 

mean 23.0 6.2 6.18 194 3.31 3.39 

 

Brine temperature generally shows a large range of about 16°C. During spring and summer 

months the brine temperature follows the trend of the mean air temperature (Fig. 22). However, 

at the beginning of the dry season and the austral autumn the brine temperature is significantly 
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higher than the temperature of the air. This can be explained by the heat absorbance capacity 

of the salt crust and the pore filling fluid storing the heat and cooling down during night. The 

brine temperature range in spring and summer months is much higher compared to winter, 

which is due to daily temperature fluctuations. In the dry season, the higher solar radiation with 

almost no cloud cover leads to an elevated heating of the salt crust during day time, resulting 

in increasing brine temperatures especially in the upper meters of the evaporates. A significant 

trend with depth could not be observed at different drillings within one location. However, 

Sieland (2014) measured brine temperature profiles in single wells during the spring season 

and found a decreasing trend with depth. Thereby, the temperature decreases down to a depth 

of about 4 m, and then either stagnates, or slightly increases again. The brines taken at 

transects from shallow depths (transect brines) generally show a high temperature range, 

although they all derive from a similar, very shallow depth between 0.1 and 0.5 m. Here, the 

time of day strongly influences the measured temperature, due to the strong heating of the 

uppermost salt crust in the course of the day. Therefore, temperatures of the transect brines 

are averaged 40% higher than of the deeper well brines, and rather in the range of mean 

maximum air temperature at the Salar de Uyuni (Fig. 22). 

 

Fig. 22: Annual trend of brine temperature (blue circles: wells, red symbols: shallow transect
 boreholes) and air temperature (continuous line: mean, shaded area: range between max.
 and min. mean temperature) at the Salar de Uyuni; air temperatures show data from the
 Uyuni meteorological station provided by the Bolivian Meteorological Service SENAMHI 

Water temperature in tributaries strongly depends on the daytime of sampling. The strong solar 

insolation leads to a high air temperature variation between day and night and a rapid heating 

of the surface water. Hence, the lowest temperature of 0.6°C at UTU-RIO-01, a tributary of Río 
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Quetena, was measured in the morning during the austral winter. Sampled spring waters show 

temperatures between 16 and 40°C. A spring is defined a thermal spring, when its temperature 

is 2 K above the yearly mean air temperature (Heath 1983). According to this definition, in the 

southern Altiplano a thermal spring has a temperature > 10°C. Thus, all sampled springs are 

thermal springs. 

The oxygen content in the brines is low, due to the low solubility of oxygen in the highly saline 

waters. The solubility of oxygen decreases significantly with increasing salinity, from 9.1 mg/L 

(0 ppt salinity) to 2.58 mg/L (200 ppt salinity) at 20°C. As the instrument for oxygen analysis 

did not provide an adjustion for such high salt concentrations, the measured values were 

corrected manually (see chapter 5.4.3). At some samples, high O2 values in the range of 

saturation were measured in deep wells, which may be the result of air drawing by the pump. 

Hence, the oxygen content strongly depended on the correct functioning of the suction pump, 

and must be regarded with caution. Especially in the deep well brines, high O2 saturations of 

40% in a depth of 4.50 – 5.50 m (SLT-08-CEN-D-1212) are rather unlikely. In contrast, rivers 

and streams are generally saturated with respect to oxygen (Table 4), due to the contact with 

atmosphere and the turbulent flow induced mixing of the water. Springs show a larger variation 

in oxygen content. The high value of 126% O2 in the thermal spring OLC-CAL-01 is probably 

attributed to a high photosynthetic activity by algae, which could be identified as orange and 

green coatings on the rocks forming at the basement of the spring pools.  

pH values in the brines are in the neutral range, showing little variation between deep and 

shallow brines. The effect of basification due to evaporation applies for the fluid samples from 

the Uyuni catchment. pH increases steadily from groundwater along springs, streams and 

finally larger tributaries shortly before entering the salt lake (Fig. 23). The rise can be explained 

by the degassing of CO2 from alkaline and neutral waters according to the following reaction 

(Eugster & Jones 1979): 

 2𝐻𝐶𝑂3
− = 𝐶𝑂3

2− + 𝐶𝑂2 + 𝐻2𝑂 (7) 

The characteristic of high pH in streams of (semi)-arid hydrological systems is a common 

phenomenon (Parnachev et al. 1999). CO2 degassing as a result of groundwater surfacing due 

to low pCO2 pressure in ambient air is followed by the precipitation of calcite. In fact, Río 

Grande and Río Colorado waters are oversaturated with respect to carbonates such as 

dolomite and calcite according to PHREEQC calculations. In the brines pH is significantly lower 

compared to the surface waters, which could be explained by sulphate reduction and 

acidification due to H2S formation. Indeed, a significant sulphurous odour occurred at several 

drilling locations, especially, when the sampled salt aquifer was located next to a lacustrine 

layer.  
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Fig. 23: Trend of pH in the catchment of the Salar de Uyuni (groundwater, spring and stream values 
 were complemented by samples from an unpublished report of Nittetsu Mining Consultants 
 (2011) to increase reliability) 

Well brines are mainly in the range of euxinic waters, which are anoxic and sulfidic (Fig. 24). 

Requirements for euxinic conditions are the availability of sulphate ions, organic matter and 

sulphate reducing bacteria, and the concurrent absence of oxygen (Meyer & Kump 2008). 

Under these conditions, the following reaction takes place: 

 2𝐶𝐻2𝑂 + 𝑆𝑂4
2− → 𝐻2𝑆 + 2𝐻𝐶𝑂3

− (8) 

The reduction of S+VI to S-2 is by far more complex and includes the formation of intermediate 

species. The lacustrine sediments that separate the salt layers are composed, amongst others, 

of organic material resulting from the sedimentation and decomposition of dead plants and 

animals to the lake bed during a phase of flash floods. These sediments were compacted and 

isolated from the atmosphere when the ground was covered by halite layers caused by the 

complete evaporation of lake water during a warm climate period. Transect brines are rather 

oxidizing compared to the deeper brines, as they were sampled in a maximum depth of 50 cm, 

thus diffusive controlled contact with the oxygen of the atmosphere is rather likely.  
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Fig. 24: Location of different sample types in the EH – pH diagram in comparison to frequently 
 occurring EH – pH conditions of natural waters (according to Hölting & Coldewey (2013)) 

The electrical conductivity of brines is generally high in the range of 220 mS/cm. The upper 

limit of the measuring device HACH HQ40d is reported with 200 mS/cm by the manufacturer. 

However, brines of the Salar de Uyuni mostly exceeded this threshold. Dilution experiments 

(see chapter 5.4.3) proved, that measured values conform well to literature values of pure 

NaCl, and are thus usable for evaluation. The rivers Río Grande and Río Colorado show a 

much higher EC than contributing streams, due to evaporation of river water during the flow 

path, which is intensified by a reduced flow velocity as a result of the low gradient in the lower 

catchment.  

Brines of the Salar de Coipasa have similar values for pH, temperature, oxygen, and redox 

potential. The only difference was observed in the electrical conductivity, which is in average 

15% lower compared to Uyuni brines.   

5.1.2 Lithium distribution 

The distribution of lithium in the brine of the upper crust was interpolated using ordinary kriging 

and a spherical variogram. As data source, 92 points with lithium concentrations distributed all 

over the salar were used. Own analyses were supplemented by Li concentration data from 

older studies (Risacher & Fritz 1991b) in order to increase information in regions with low data 

density, for example in the western part of the salt lake. A logarithmic transformation was 

performed in order to reach normal distribution (see chapter 4.3.2). Fig. 25 shows the resulting 
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model of Li interpolation. Two zones of Li enrichment can be identified: at the southern margin 

near the delta of the Río Grande, and in the northernmost part. These zones show significant 

differences regarding overall concentrations and spreading. 

 

Fig. 25: Distribution of lithium in the brine of the Salar de Uyuni’s upper crust created by kriging in 
 ArcGIS using spherical semivariogram; data stem from own analyses (transects, wells) and 
 Risacher & Fritz (1991b), and were log transformed prior to interpolation 

Risacher & Fritz (1991b) measured Li concentrations up to 2.5 g/L in the brine in the Río 

Grande delta region. These high values could not be verified by own investigations, caused by 

the impossibility of accessing the southernmost area due to a high moistness of the salt layer 

and the demarcation of the region as military area. However, the comparison of selected own 

sampling locations and proximal data points of Risacher & Fritz (1991b), i.e. at 02-LLI, 09-RIO 

and 06-NOR, shows a good accordance in Li concentrations, so that it can be trusted in the 

accuracy of the literature data. The Li distribution in the south is characterized by high 

concentrations at the margin, which are rapidly decreasing towards the east and slowly 

decreasing towards the northwest. Besides the Río Grande, the Río Colorado delivers 

significant amounts of Li with the all-season inflowing water. Fig. 26 shows the Li interpolation 

in the southern part including the delta plains of the inflowing rivers. Surprisingly, the input of 

the element by this river is not reflected in the Li distribution pattern in the delta region, as 

would be expected similar to the Río Grande delta. Hence, the evaporation of river water 

containing high contents of Li cannot be the only mechanism for the enrichment of the element. 
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Fig. 26: Distribution of Li in the southeastern part of the Salar de Uyuni; blue shaded are the delta 
 regions of the inflows Río Grande and Río Colorado (legend as in Fig. 25) 

A possible explanation could be the transport of inflowing water (and contained solutes) on the 

surface of the salar towards the west and northwest by winds. However, a check of the 

SENAMHI database (station Uyuni) reveals, that wind direction is almost constantly W and NW 

and has remained constant since beginning of record in the 1940s. The same wind direction 

was estimated in the field by the accumulation of wind-blown dust at the windward side of the 

salt efflorescence along polygon borders. Hence, the transport of concentrated, lithium 

enriched solutions which developed from the evaporation of inflows and the dissolution of salts 

from the surface crust, cannot be responsible for the high Li concentration at the southern 

border. The distribution of Li in the northern part is described by significantly enlarged Li 

concentrations in a strip-shaped, about 10 km wide zone running parallel to the 2-3 km distant 

shore (Fig. 25). Unfortunately, the kriging interpolation underestimated the maximum 

concentrations in the brines from that region, which were in the range of 1,500 mg/L, 

comparable to values near the Río Grande delta. Multiple indicator kriging with raw data or 

simple linear triangulation with raw data would probably provide a more realistic result. In 

contrast to the Río Grande delta, concentrations are not highest at the shore, but are limited 

to the described zone. Hence, a different delivery and enrichment mechanism for Li than the 

input from inflowing streams must be considered. 
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5.1.3 Variation with depth and seasonal effects 

Wells at several locations on the salar were constructed with screens in different depths in 

order to investigate the brine composition in dependency of the depth. The sampling depth 

reached from 0.2 m, located right beneath the brine table, until 9 m. A significant change in 

brine composition over the depth of the upper salt aquifer could not be observed (Fig. 27). 

Slightly increasing lithium concentrations with depth could be observed only at locations, where 

the range in sampling depth was higher (SLT-01-COL, SLT-02-LLI, SLT-08-CEN). At most 

locations, differences in concentrations between samples from different depths were within 

10% without a statistically significant trend. 

 

Fig. 27: Trend with depth for lithium in brines from locations, where multiple wells in different depths 
 existed 

At drilling location SLT-LLI, it succeeded to install a screen in the second salt layer (LLI-B). 

Here, the mud layer started in 4 m depth and had a thickness of only 3.8 m, which enabled the 

drilling beyond that depth and the sampling from the second halite aquifer (8-9 m). The 

lacustrine layer forms the remnant of paleolake Tauca, and separates the salt crust formed 

during an earlier and the present dry climatic phase. Due to the low permeability of the 

separating lacustrine layer, the comparison of brine composition between the two aquifers 

could give indications for changes in solute input processes during the two different climatic 

periods. All elements, including Li, show a deviation between the two brine horizons below 5%, 

which is surprisingly low. A significant change exists only for borone (25% higher in greater 

depth), Ca and SO4, which is illustrated in Fig. 28. 
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Fig. 28: Variation with depth of selected elements in screened wells of location SLT-LLI (brown 
 shaped area marks position of lacustrine layer) 

In Mai 2011, brines from screened wells were sampled right after the rainy season, when 

rainwater still covered parts of the salt lake. A comparison of chemical composition between 

these brines and samples from the dry months was performed. The shallowest screened wells 

with data from Mai 2011 are SLT-06-NOR-A (0.2 – 0.9 m) and SLT-08-CEN-C (1.8 – 2.8 m), 

and show that the composition does not change significantly. This is plausible because rain 

water and water from surrounding inflows do not interact readily with the brine. Hence, a 

dilution effect could not be observed. This fosters the assumption that the upper part of the salt 

crust, a very compact, cemented layer, is serving as barrier between diluted meteoric waters 

and concentrated brine underneath. Research regarding porosity and permeability of the Salar 

de Uyuni salt crust showed that the upper 5-10 cm salt cap is formed by cemented salt with an 

extremely low share of pores, which are additionally not connected to each other, followed by 

a friable layer with a high total and effective porosity (Sieland 2014). The stratification is 

visualized in Fig. 29, showing the upper 50 cm of a drill core from location SLT-08-CEN. 

A clear trend over time could not be observed. Brines from screened wells were sampled 

between 2009 and 2014, and during this time the composition, irrespective of depth and 

season, did not change significantly. Only at site SLT-02-LLI, the concentration of Br constantly 

decreases over the years of sampling from ~55 mg/L to 25 mg/L. Although this trend was 

observed in all four wells of SLT-02-LLI covering a total depth range of 0.3 to 9 m, could not 

be confirmed at any other sampling site of the Salar de Uyuni. 
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Fig. 29: Image of a drilled salt core (diameter: 8 inch) from the upper salt crust at site SLT-08-CEN-A; 
 the upper 10 cm are composed of a compact, dense layer, followed by a friable zone with a 
 high amount of visible, irregularly shaped pores (image by Ariane Schön) 

5.1.4 Isotopic contribution 

The stable isotopes deuterium (δ²H) and δ18O were determined in the brines of the Salar de 

Uyuni and the Río Grande river water (Table A - 10: Results of isotopic analyses of brine and 

river samples, including sampling depth  and estimated distance from the Río Grande delta 

(n.d. - not determined). Results compared to analyses of groundwater, Altiplano streams, lakes 

and pore brines from former studies are illustrated in Fig. 30. Within the brine, δ2H values range 

between -54 and -21‰ SMOW, the river water is significantly lighter with -78‰ SMOW. 

According to Clark & Fritz (1997), the deuterium signature of the river points to the typical 

contents in magmatic, meteoric and geothermal waters, hence, a single source cannot be 

identified. δ18O values range from -2.5 to 4.8‰ SMOW in the brines, the river water is again 

distinctly lighter with -8.8‰ SMOW. The comparison to values from Clark & Fritz (1997) shows, 

that the river water exhibits a δ18O signature typical for geothermal and meteoric waters.  

The local meteoric water line (LMWL) was calculated from δ2H and δ18O values, which were 

collected over several years from monthly precipitation samples of the San Juan 

meteorological station, which is located at the southern shore of the Salar de Uyuni (Fiorella 

et al. 2015). The resulting LMWL is: 

 𝛿2𝐻 = 8.11 ∗ 𝛿18𝑂 + 16‰ (9) 

Local meteoric water lines usually show a deviation in slope and deuterium excess compared 

to the global meteoric water line, which results from local climatic conditions including the 

annual rainfall regime and the source of the vapour mass (Clark & Fritz 1997). Groundwaters 

in the catchment of the Salar plot along the GMWL and near the LMWL. This indicates that 
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their origin is mainly precipitation in form of rainfall and snow. Waters, no matter of which type 

and source, are exposed to specific local conditions: arid climate and high altitude. The 

distribution of δ2H and δ18O at the Salar de Uyuni are strongly affected by both climate and 

altitude. 

 

Fig. 30: Stable isotopic composition of the Salar de Uyuni basin; Uyuni brines and Río Grande are 
 from own analyses, local evaporation line (LEL) and Altiplano lake waters from Abbott et al. 
 (2000), groundwater from a Bolivian-Japan joint study (Nittetsu Mining Consultants CO. 
 2011); stream and pore brine values are from the Salar del Hombre Muerto basin (Godfrey et 
 al. 2013); local meteoric water line was calculated from the San Juan river, which is located 
 in the southern Altiplano (Fiorella et al. 2015) 

The brines clearly deviate from the LMWL, which is the result of evaporative enrichment of δ2H 

and δ18O. However, brines also show a deviation from the LEL determined by Abbott et al. 

(2000). The reason is, that Abbott determined the LEL from open lakes on the Altiplano, 

including lakes directly and indirectly fed by glacial meltwater. In contrast, brines from the Salar 

de Uyuni are located in a closed basin fed only by precipitation and small inflows, and thus 

show a strong enrichment in heavy isotopes due to intensive evaporation. The evaporation 

effect is also visible in the isotopic composition of tributaries to the Río Grande and the Río 

Grande itself. Streams and rivers are strongly influenced by evaporation on the pathway, 

caused by solar insolation and a low humidity. Thus, the Río Grande sample, which was taken 
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near the outlet to the salar, is clearly enriched in δ2H and δ18O compared to its tributaries, and 

plots along the evaporation line of Uyuni brines rather than along the LMWL. 

The variation between different depths within one sampling site is much lower than the 

variation between different sampling sites. This is expressed in a standard deviation of 1.8 

between the sampling locations and a mean standard deviation of 0.16 for different depths at 

one location. Hence, a depth depending trend in δ2H and δ18O could not be observed. The 

high range of 30‰ for δ18O and 7‰ for δ2H in the brines indicate, that these waters are situated 

in differing hydrological settings, depending on their location on the salar. Samples from SLT-

01-COL, SLT-02-LLI and SLT-07-SAL are clustered near a δ18O value of 0‰ (Fig. 30). These 

sites, which are located not too far from the shore (see Fig. 15), could be influenced by locally 

feeding groundwater flowing towards the salt layers and mixing with the interstitial brine. This 

explanation could also apply for site SLT-04-YON, where δ18O and δ2H show the lowest values 

of all sampled brines (-2.5 and -54‰, respectively). The sample stems from the second salt 

aquifer, located in between a 4 m thick lacustrine layer above and a > 1.3 m thick mud layer 

underneath (see Fig. B - 1 for visualization). Feeding groundwater from freshwater aquifers at 

the shore zone could accumulate in the evaporate aquifer and mix with heavy brines, leading 

to a measurable decline of δ18O and δ2H. 

In order to investigate the relation of δ18O and δ2H to brine evolution, isotopes were compared 

to a conservative constituent. As Li behaves conservative during the evolutionary path of the 

brines, it was used as a tracer for brine concentration in the relation to stable isotopes of water. 

Fig. 31: Relation of stable isotopes of water with Li in the brines of the Salar de Uyuni 

Fig. 31 demonstrates that heavy isotopes first increase in the brines with further concentration, 

but then describe a reverse trend with further brine concentration, reaching a steady-state after 

a while. This effect has been described in earlier works and is common for solutions with high 
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salt concentrations (Lloyd 1966). Sofer & Gat (1975) explain reaching stationary isotopic 

composition with the exceedance of the point of saturation, beyond which the salt 

concentration does not further increase due to the precipitation of salts. 

The isotopic composition of sulphate in water depends on the sources of sulfur and on the 

fractionation processes occurring during the pathway through the catchment. Fig. 32 shows 

the distribution of δ34SSO4, δ18OSO4, and corresponding SO4
2- concentration in brines and river 

water. A striking observation is the high deviation of δ34S in the inflow compared to the brines. 

A possible explanation could be the process of dissimilatory sulfate reduction, where anaerobic 

bacteria form H2S using SO4
2- as electron acceptor: 

 2𝐶𝐻2𝑂 + 𝑆𝑂4
2− → 2𝐻𝐶𝑂3

− + 𝐻2𝑆 (10) 

Due to the fact that sulphide has lighter δ34S values, residual SO4
2- becomes progressively 

enriched in δ34S. This effect has been previously described for groundwater and pore brines in 

environments containing an organic carbon source and lacking oxygen (Böttcher et al. 1998, 

Fritz et al. 1989, Krouse et al. 1970). The formation of H2S indeed plays a role in the salar 

brine, which is supported by the characteristic rotten egg smell of some brine samples. 

Microbiological investigations on the Uyuni salt crust showed the occurrence of sulphate 

reducing species as Desulfovibrio, Desulfuromonas and Desulfotomaculum (Perez-Fernandez 

et al. 2016). However, such a process cannot account for the whole extent of δ34S deviation in 

river and brine. As the dissolution of gypsum does not go along with a measurable isotopic 

fractionation, the isotopic composition of SO4
2- in water can be used as tracer for the origin of 

sulphate (Clark & Fritz 1997). Various gypsum diapirs of marine origin were formed during the 

Cenozoic northeast of the Salar (Rettig et al. 1980, Risacher 1991b). According to Moser & 

Rauert (1980), δ34S in brines conform to marine evaporate sulphates, leading to the 

assumption, that sulphate in brines partly stem from the dissolution of these diapirs. The 

detection of highest δ34S in brines of the sampling site SLT-NOR-06, located in northeastern 

part of the salar, supports this assumption. A permanent connection of the Salars of Uyuni and 

Coipasa via the Serrania Intersalar during ancient times could be responsible for the entry of 

δ34S rich waters to the Salar de Uyuni from the north. 
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Fig. 32: Plot of δ34S to δ18O in SO4 and SO4
2- concentration in dissolved sulphate of the Salar de 

 Uyuni brines and Río Grande water; dotted line signifies the trend of δ34S/ δ18O in the brines 
 approaching a constant value 

A correlation of δ34S with the SO4
2- concentration is not visible (Fig. 32). This could occur due 

to fractionation processes during the precipitation of gypsum from the brines, which are 

oversaturated with respect to gypsum. This leads to a removal of SO4
2- and the enrichment of 

34S in the residual brine, as 32S is preferentially incorporated in precipitates. 

The age of brines was determined on four brine samples from different regions of the Salar by 

means of radiocarbon dating. Raw 14C activities (a) were corrected for natural isotopic 

fractionation by using the δ13C results of AMS measurements (see chapter 4.2.4). Corrected 

values were used for age determination of the brines in the upper meters of the salt crust 

according to the equation: 

 𝑡 = −8,267 ∙ 𝑙𝑛 (
𝑎𝑡 𝐶14

𝑎0 𝐶14 ) (11) 

Where 𝑎𝑡 𝐶14  corresponds to the 𝑎𝛿13𝐶 and 𝑎0 to the initial 14C activity, which is generally 

assumed to be 100 pmC. However, the 14C activity was not constant at 100 pmC during the 

Pleistocene and Holocene, but steadily decreased with time (Fig. 33), due to variations in solar 

output. Results were corrected using adapted values for the initial activity. The results of 14C 

analyses are comprised in Table 5. By correcting the value of 𝑎0 for each time span, the age 
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can be expressed in calender years, rather than radiocarbon years for non-corrected ages 

(Clark & Fritz 1997).  

Table 5: Corrected 14C activities in the samples with δ13C values used for fractionation correction; and 
 final ages (Agecal) of the brines calculated from adjusted a0 values.  

Sample 
Depth 

[m] 

𝑎 

[pmC] 

𝛿13𝐶 

[‰PDB] 

𝑎𝛿13𝐶 

[pmC] 

Age 

[yr BP] 

a0 

[pmC] 

Agecal 

[yr BP] 

06-NOR-B 2.8 - 3.8 52.2 -13.5 ± 2.6 51.0 ± 0.41 5,570 ± 65 108 6,200 ± 65 

03-INC-C 4.3 - 5.3 41.8 -21.6 ± 1.5 41.5 ± 0.54 7,270 ± 110 109 7,980 ± 110 

10-PES 5.0 - 6.0 40.8 -19.3 ± 1.5 40.3 ± 0.41 7,510 ± 85 110 8,300 ± 85 

07-SAL 7.1 - 8.1 24.6 -3.4 ± 0.3 23.5 ± 0.16 11,970 ± 55 118 13,340 ± 55 

Investigated brines have ages determined from radiocarbon between 6,200 and 13,340 years. 

A significant linear correlation exists with depth, the brine ages steadily increase downwards 

(Fig. 34). According to the results of radiocarbon dating, a significant mixture of the brine in the 

investigated depth range of 3 to 8 m does not occur. This might be due to the existence of thin, 

dense clayey layers in the salt crust, which impede the rise of brine from deeper strata. Sieland 

(2014) found, that gypsum layers show a very low gas permeability. The linear correlation with 

depth is evidence, that the inflow of groundwater from surrounding aquifers into the salt layers 

and the subsequent mixing with brine is negligible. This is plausible considering the different 

densities (1.2 g/cm3 of brine versus 1.0 g/cm3 of freshwater). 

 

Fig. 33: Development of atmospheric 14C activity during the Holocene, determined from the 
 dendrochronological age of tree rings and the U/Th age of shallow marine corals (Clark & 
 Fritz 1997) 
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SLT-06-NOR and SLT-07-SAL are located near the shore, in about 10 km distance to the 

northern and south-eastern salar border, respectively. However, radiocarbon dating showed 

no measurable mixing of brine with river waters infiltrating in the shore zone and flowing as 

groundwater along the lacustrine layers. These waters should significantly decrease in 

measured ages, which is not the case. It must be admitted, that samples stem from different 

regions of the Salar. In order to verify the assumptions concerning brine stratification, a 

repetition with samples from different depths at one location having multiple wells would be 

necessary. Unfortunately, this was not possible due to the low overall content of carbon in the 

brines and the difficulties in extracting enough carbon for the dating procedure. Mostly, 

contents of extracted CO2 were tightly above the minimum amount required for analysis. 

Further, four samples are not enough to be representative for the whole salar. 

 

Fig. 34: Fractionation-corrected, a0 adjusted radiocarbon ages of brine samples in dependence of 
 depth; and radiocarbon ages from Fornari et al. (2001) for comparison, obtained from 
 carbonates and organic matter in the Salar de Uyuni (for measurement uncertainties see 
 Table 5) 

Literature values for comparison of brine ages in the Salar de Uyuni, and generally in salt lakes, 

are not existent. However, few sediments were analyzed in the past. Ericksen et al. (1977) 

reported a radiocarbon age of 3,520 ± 600 years for an organic-rich mud from a depth of 15 

cm in the Salar de Uyuni, about 35 km west of Colchani (small village at the middle of the 

eastern shore). Sylvestre et al. (1999) determined 14C ages from mollusc shells, calcareous 

crusts and bioherms sampled at the volcanic flanks of Mt. Thunupa to an age of 14,000 – 

16,000 yr BP. In the course of a deep drilling in the center of the Salar de Uyuni, Fornari et al. 
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(2001) measured radiocarbon ages from carbonates and organic matter in lacustrine layers. 

The comparison to obtained brine ages shows a very good accordance, the ascent is in a 

similar range (Fig. 34). Thus, it can be assumed, that the interstitial brine in a certain depth 

corresponds in age to the surrounding evaporates leading to the conclusion that the uppermost 

brines were formed concurrently with the salt crust. Apparently, a significant mixture of brine 

with infiltrating rainwater in the upper salt crust during the rainy season does not take place, at 

least not in depths of > 5m. Also, the increasing brine age with depth contradicts the existence 

of significant vertical brine flow and supports the theory of a stable stratification. According to 

Sieland (2014), fine gypsum layers separating the porous upper salt crust in varying depths, 

show a very low permeability, which might be responsible for the prevention of brine mixing. 

Table 6: Locations of radiocarbon dating with particular thickness of the upper salt crust and 
 estimated age 

Location thickness [m] Calculated age [cal yr BP] 

06-NOR-B 5.2 9,770 ± 1,520 

03-INC-C 5.8 9,650 ± 1,020 

10-PES 8.0 12,070 ± 1,100 

07-SAL 9.0 15,800 ± 1,040 

The regression equation from calculated radiocarbon ages (Fig. 34) and the maximum depth 

of the upper salt layer at each 14C sampling site, estimated during core analyses in the field 

(see Fig. B - 1), served for the determination of the age of the uppermost salt crust (Table 6): 

 𝐴𝑔𝑒𝑐𝑟𝑢𝑠𝑡 =
𝑚 − 0.2313

0.0006
 (12) 

Calculated ages between 9,770 and 15,800 years for the formation of the crust are in 

concordance with results from Fornari (2001), who dated the end of lake Tauca phase to 

12,980 cal yr BP, estimated from organic matter in a depth of 6.3 m at the bottom of the upper 

salt layer. From the ages and brine sampling depths, the annual growth of salt crust since the 

drying of paleolake Tauca can be estimated, amounting to 0.6 mm per year (Fornari et al. 

(2001): 0.7 mm/a). The same order of magnitude shows the resulting deposition rate calculated 

from data of the mud sample from Ericksen et al. (1978) explained above, which would account 

for 4 mm in 100 years. However, these calculations do not include the initial thickness of the 

salt crust, which was formed from the complete precipitation of dissolved solutes contained in 

lake Tauca in the course of total lake evaporation.   
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5.2 Solute input from the catchment 

In a first step, the outline of the catchment of the Salar de Uyuni was determined by means of 

remote sensing methods, followed by a detailed evaluation of watershed borders and 

extensions. This included the investigation of a possible recent or ancient superficial 

connection of the Salars of Uyuni and Coipasa, which would have a considerable impact to the 

mass balance of lithium and other solutes’ input to the Salar de Uyuni. Then, rock and 

sediments sampled from the southern catchment were evaluated regarding the geological map 

of the investigation area, and set in relationship to streams and springs in the watershed.  

5.2.1 Outline of the catchment 

The catchment of the Salar de Uyuni, calculated with ArcMap using the ArcHydro extension, 

amounts to 63,000 km² (Fig. 35). It contains the subcatchments of the main inflows Río Grande 

and Río Colorado, and various all-season and ephemeral streams contributing to the rivers. 

To the north, the Salar de Uyuni catchment is sharply limited by the Serrania Intersalar. To the 

west, several intermontane sinks extend the catchment far across the Chilean border to only 

30 km distance from the Pacific. In these sinks, smaller salt pans have formed which can be 

identified from satellite images. The input of solutes by streams to the Salar de Uyuni from 

these regions is probably limited to intensive rain events in summer months. In dryer years, 

the transport of water masses from surrounding mountains results in the accumulation of salts 

and sediments, and leads to the formation of smaller salt pans. 

Several steps of the catchment delineation procedure using ArcHydro, as the calculation of 

flow accumulation and the final drawing of watersheds are time consuming and hardware 

intensive. Thus, the underlying SRTM file should have the minimum necessary extension for 

covering the complete watershed. The layer of flow accumulation showed unnaturally running 

parallel horizontal lines in the region of the alt lake and the southern deltas, caused by the flat 

terrain of the salt flat and the extended floodplains upstream of the delta region. Approaches 

to avoid such a problem are the fill sinks plus tool and the optimized pit removal tool. 

Unfortunately, the optimized pit removal tool is limited to a maximum grid size of approximately 

5∙107 cells, which is about the half of the utilized SRTM grid. Hence, the application of the tool 

resulted in an error. The fill sinks plus tool did not provide satisfying results or an improvement 

compared to the normal fill sinks tool implemented in ArcHydro. However, final watershed 

delineation was not influenced by the falsified course of subcatchment borders resulting from 

unnatural parallel lines in the flow accumulation layer. 
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Fig. 35: Comparison of Salar de Uyuni watershed derived from own analyses using the ArcHydro 
 extension and Hydrosheds  
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Two types of digital elevation models were used for watershed delineation: ASTER and SRTM. 

Although the used SRTM and ASTER data showed the same spatial resolution, differences in 

the resulting catchment occurred. Former studies show, that especially in flat terrain, SRTM 

elevation models better represent the actual conditions and produce less artefacts. Kanoua & 

Merkel (2016) come to the conclusion, that SRTM data show a more detailed morphology and 

a slope better reflecting the reality. Furthermore, the active radar based system SRTM shows 

advantages in penetrating a cloud cover and is thus less affected by atmospheric conditions, 

compared to passive ASTER using available light. Table 7 shows the result of watershed 

estimation compared to literature values. Hydrosheds (Hydrological data and maps based on 

shuttle elevation derivatives at multiple scales) provides a vector file with watershed 

boundaries containing the drainage basins of whole South America9. The difference in size of 

about 30% is probably due to the resolution difference of the underlying elevation model. 

Former studies using the higher resolution could not be found in literature. However, own 

delineations using a 90 m SRTM did not provide satisfying results, as the shapes were 

fragmented and incomplete (Jackisch 2014). In order to verify the results obtained by the 

ArcHydro extension, the procedure was repeated using the tools for watershed delineation 

provided by the Spatial Analyst tools of ArcGIS. The resulting catchment roughly coincides with 

the catchment received by ArcHydro, confirming the results of own estimations compared to 

literature data, and supporting the thesis, that differences arise from different resolutions of the 

raw data. 

Table 7: Watershed area of own analyses compared to different sources 

Source Data source tool Catchment size [km²] 

Own analysis SRTM, 30 m ArcHydro 63,000 

Own analysis SRTM, 30 m Spatial Analyst 63,031 

Hydrosheds SRTM, 90 m - 47,220 

Guyot et al. 1990 - - 46,600 

Bradley et al. 2013 
(USGS) 

SRTM, 90 m - 47,000 

The map was used for the assignment of water, rock and sediment sampling sites to the 

underlying geological unit. The southeastern part of the Salar de Uyuni catchment is mainly 

characterized by surficial deposits and sediments dating back to Holocene and Pleistocene, 

including unconsolidated alluvial, eolian and colluvial material, locally supplemented by 

                                                
9 Access via https://hydrosheds.cr.usgs.gov/hydro.php in June 2017 
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shallow lacustrine and salt deposits (Fig. 7). The region west of the salar mostly consists of 

stratovolcano deposits with lava flows and flow breccias of andesitic to dacitic composition, 

complemented by extensive outflow sheets of ignimbrites and ash-flow tuffs (Fig. 7). Tributaries 

to the Río Grande and Río Colorado have their source in partly thermal springs located in 

elevated mountain regions and volcanic flanks, which are rich in ignimbrites and pyroclastic 

rocks of volcanic origin. The main course of the rivers and their tributaries is characterized by 

unconsolidated surficial deposits resulting from the alternating processes of weathering, 

associated mineral dissolution, and the deposition of silts in the extended floodplains. The 

dominance of these deposits is reflected in Fig. 36, which illustrates the distribution of 

geological units in the catchment of the Salar de Uyuni. The evaluation of SKYLAB and 

LANDSAT images by Francis & Baker (1978) showed that ignimbrite shields in the Southern 

Bolivian Altiplano have their source in large calderas which erupted during the Miocene and 

Pliocene. 

 

Fig. 36: Distribution of geological units in the catchment of the Salar de Uyuni (volcanic rocks: 
 undifferentiated, but mainly lava flows) 

5.2.2 Hydrological connection between Salars of Uyuni and Coipasa 

A superficial hydrological connection between the Salars of Uyuni and Coipasa has not been 

investigated so far. However, a potential connection would have a high influence on the ionic 

balance of the salars, the mass balance of input and output to and from the salars, and the 

existing theories about the sources of solutes to the Salar de Uyuni. A hydrological connection 

is supported by the observation, that the highest lithium values in the Coipasa brine are located 

in the south-eastern part, which would be the outflow to the Salar de Uyuni. The Uyuni brine 

shows a high enrichment of lithium in the north-eastern part, the inflow region of assumed 

superficial and/or subsurface waters originating from the Salar de Coipasa. 
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The modelling of watersheds with ArcGIS showed, that the drainage line at the NE side is 

situated about 30 km north from the northern shore of the Salar de Uyuni (Fig. 35), excluding 

the Coipasa salt lake. This is due to the fact, that the Salar de Coipasa is located 6 m higher 

than the Salar de Uyuni. However, a desiccated ancient stream bed called the Quebrada 

Negrojahuira with a width of approximately 1-2 km can be clearly identified from satellite 

pictures (Fig. 37). To verify a superficial connection, satellite data of the region of interest were 

investigated. First, the meteorological data from Uyuni was checked for austral summer 

months with an especially high amount of precipitation. Second, satellite data from the chosen 

time interval were selected from the Glovis database. Unfortunately, Landsat data from the 

rainy season are mostly of poor quality due to the usually high cloud coverage. For example, 

during the wet months of 2000/2001, 2002/2003 and 2013/2014 a hydrological connection is 

visible on satellite images, but cannot be evaluated due to the high lack of information by the 

cloud cover. A further problem is, that Landsat 7 files from the Enhanced Thematic Mapper 

after May 2003 are not usable because of distracting black stripes without data, caused by the 

failure of the Landsat 7’s Scan Line Corrector in May 200310. As each stripe represents a width 

of ~400 m, data loss is too high for evaluation of the existence of a water flow in the stream 

network between the Salars. Between December 1986 and January 1987, the rainfall of 250 

mm was the 2.5 fold of average precipitation during that time span.  

 

Fig. 37: Satellite images from January 1987 (left) and March 1987 (right): in January, the hydrological 
 connection is clearly visible; the line results from the sequence of different satellite images 

Thus, satellite images from Jan. 1987 were used for several band combinations in order to find 

the best composition for the visualization of water flooded areas and the detection of streams 

and river channels. The band combination 7-5-3 emerged to be suitable for the differentiation 

                                                
10 Information source: https://landsat.usgs.gov/slc-products-background 
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of water flooded areas and small streams from the surrounding sediments and rocks. Fig. 37 

shows the Landsat image from Jan. and March 1987 with bands 7-5-3 combined. A connection 

of the salars is obvious. 

Due to the lack of elevation information in satellite data, the evaluation was extended by taking 

a look at SRTM data in the concerning region. Fig. 38 shows the elevation model of the Salars 

of Coipasa and Uyuni. In order to focus the analysis of a superficial hydrological connection to 

the area of interest, the visualization of the elevation model was limited to the range between 

3,665 and 3,670 m a.s.l. Altitudes below and above were set to the colors white and black, 

respectively. 

 

Fig. 38: Elevation model of Salar de Uyuni and Salar de Coipasa illustrating the possible connection 
 by limiting the shown heights to the range between 3,665 and 3,670 m a.s.l. 

However, elevation data of SRTM and ASTER products should be considered critically during 

the investigation of flat terrain, where minor changes in elevation determine flow directions and 

flow accumulations. The absolute vertical error was estimated in a couple of studies to 6 – 7 

m (Elkhrachy 2017), whereby low-vegetated land and bare soils as occurring in the salt lake 

environment generally show higher accuracies than dense vegetation and cultivated areas. A 

closer look to the investigation of a hydraulic connection should be performed by field 

observations, the detection of streams during the rainy season, which is limited by the hindered 

access to the regions of interest. A subterrestrial connection could be as well possible. Wolf 

(2010) suggests the existence of an aquifer consisting of older sedimentary units, covered by 

the younger volcanic layers of the Serrania Intersalar. 

Another approach for solving the question of connectivity between Salar de Coipasa and Salar 

de Uyuni is a geochemical balance calculation. Therefor, the amount of Li in the brine of the 

upper salt crust was compared with the input by tributaries during the last 10,000 years since 

drying of paleolake Tauca at the Salars of Uyuni and Coipasa. Annual discharge of Río Lauca 
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near its mouth towards Coipasa salt lake is estimated to a minimum of 200 x 106 m³ (Grove et 

al. 2003), Risacher and Fritz (1991b) give a value of 140 x 106 m³, provided by the SENAMHI 

of Bolivia in 1985. Ballivian (1981) roughly measured the flow rate of Río Grande with 1 m³/s 

during low-level times and 4 m³/s during rainy season months. Assuming an average amount 

of 4 low-level and 8 high-level months, the overall flow rate of Río Grande would be 2 m³/s and 

63 Mio m³/a, respectively. Similar results showed episodic measurements during field trips by 

Risacher (1991), who estimated an annual discharge of 60 ± 30 x 106 m³ (width = 30-70 m; 

mean depth = 0.15-0.20 m; surface water velocity = 0.3 m/s). Reliable information about lithium 

resources in the Salar de Coipasa could not be found in literature and thus were calculated 

from the limited data available. A rough estimation was made with the following equation: 

 𝑅 = 𝑉 ∙ 𝑛𝑝 ∙ 𝑐𝑏𝑟𝑖𝑛𝑒 (13) 

Here, 𝑅 is the lithium resource in Mio t, 𝑛𝑝 defines the porosity of the salt crust, and 𝑐𝑏𝑟𝑖𝑛𝑒 is 

the lithium concentration in brine in g/L. The volume of the salt lake V is calculated as the 

product of area and mean depth of the uppermost brine-filled salt crust. The resource 

estimation covers only the uppermost salt layer, as they form the result of the last 10,000 years’ 

input of solutes mainly from Río Lauca. Smaller streams were negotiated, due to the minor 

influence on the ionic balance and the lacking of chemical and discharge data. Input 

parameters and results of calculation are combined in Table 8. The amount of total Li resources 

in the Salar de Uyuni was adopted from Sieland (2014), because his estimation is based on a 

resource model taking into account the variations in crust thickness, porosity and Li 

concentrations in brine, and thus represents the most precise information available. 

Table 8: Input parameters for the estimation of Li contribution during the last 10,000 years and 
 present resources in the Salars of Uyuni and Coipasa 

Salar Discharge of 
main inflow 

Li in 
inflow 

Li input in 
10,000 yrs 

Size Depth1 Porosity Avg. Li 
conc. 1 

Li 
resources1 

 106 m³/a mg/L 106 t km² m % mg/L 106 t 

Coipasa 140 - 200 1 1.4-2.0 2,500 1-2 35 300 0.2-0.5 

Uyuni 60 3 1.6-1.8 10,000 1-10 14-352 500 6.992 

1data apply for the upper salt crust  
2estimation is based on exact calculation in Sieland (2014) 

The comparison of lithium input by Río Lauca during the last 10,000 years and the existing 

lithium accumulated in the upper salt crust shows that the river transported more than the 5-fold 

of lithium obtained in the salar brine. Hence, a depletion of lithium must have taken place. 

Possible explanations could be the sorption by clay minerals as illite and smectite, but 
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lacustrine sediments underlying the salt crust are poor in smectite (Lebrun et al. 2002). Another 

explanation could be the overflow of brackish, lithium enriched waters during the rainy season 

and the transport of waters in underlying aquifers towards the Salar de Uyuni. Discharge of 

Río Lauca is significantly higher compared to Río Grande and, considering the smaller size of 

the Salar de Coipasa, the surface is consequentially covered by water most time of the year. 

Thus, a hydraulic gradient is likely to exist towards the Salar de Uyuni, where the surficial water 

quickly dries up with beginning of the dry season. This could be a possible explanation for the 

existence of all-season humid areas in the northeastern part of the Salar de Uyuni, and 

elevated concentrations of lithium in brine, although a visible input of river water is missing. 

This theory fits to the lithium balance of the Salar de Uyuni, where estimated lithium resources 

in the upper crust exceed the Li input during the last 10,000 years, calculated from discharge 

and concentrations in the Río Grande (Table 8). 

Other inflows, as the Río Colorado, were disregarded for calculation, because estimations of 

discharge are missing, and Li concentrations are significantly lower. The large difference 

between input and resources could be due to the transport of Li with suspended matter. 

Chemical analyses of river water comprise the dissolved load of elements. Especially during 

the rainy season large masses of suspended sediments, removed by rainfall from the 

weathered surface in the southern catchment, are carried towards the salt lake. Elements with 

a strong affinity for ion-exchange sites on clay minerals like Mg, K and Li are then carried in 

the clay fraction of suspended load, and accumulated in a relatively concentrated area in the 

river delta, where flow velocity rapidly decreases allowing the suspended matter to sediment. 

Considering the results of calculation, it should be admitted, that input parameters for 

estimation are afflicted with large uncertainties due to the lack of precise information. 
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5.2.3 Chemical composition of inflows 

The relative abundance of major ions in samples from inflows to the Salar de Uyuni is illustrated 

in a Piper diagram (Fig. 39, values are given in Table A - 5). Streams show no clear trend in 

composition, but are spread over the area. Springs are mainly of NaCl type with low 

concentrations of Ca and HCO3. 

 

Fig. 39: Piper plot of stream, spring and well waters in the catchment of the Salar de Uyuni 
 (classification of the zones: I – calcium sulfate waters, II – calcium bicarbonate waters, III – 
 sodium chloride waters, IV – sodium bicarbonate waters)  

Two of three sampled springs contain high lithium concentrations of 4.9 and 7.2 mg/L (SLT-

SPEC-JIR, SLT-SPEC-COA). It is conspicuous, that all sampled streams and springs from the 

surrounding of volcano Thunupa are remarkably enriched in lithium. High Li contents in springs 

in the catchment of the Salar de Uyuni have also been measured during former investigations. 

Ericksen et al. (1978) found 4-6 ppm Li in thermal springs at the margins of Salar de Empexa, 

located only about 15 km west of the Salar de Uyuni. A thermal spring near Challapata 

contained 17 ppm Li. Risacher & Fritz (1991) measured significantly increased Li 

concentrations up to 14 mg/L in rivers and springs contributing to various smaller salars in the 

Southern Bolivian Altiplano. According to Tan et al. (2012), the content of Li in rivers and 

streams is a hint for the existence hydrothermal systems in their catchment. Huh et al. (1998) 

published a compilation of lithium contents in major world rivers, together representing about 

one third of world river flow and covering different climatic regions. The mean amounted to 215 
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nM, or 1.5 µg/L. Compared to that value, the sampled streams and rivers from the Uyuni 

catchment showed enrichment factors between 6 and 3500, with a mean factor of 670, which 

is visualized in Fig. 40. The graphic shows the plot of Na and Li in the catchment water 

samples, compared to major world river waters. As the access to streams and hydrothermal 

springs in the Salar de Uyuni region is impeded by scarce infrastructure, literature data from 

Risacher & Fritz (1991a) for the Southern Altiplano was included in the evalution. The 

correlation between Li and Na in water flowing to the salar points to the main source of Li: 

leaching of volcanic rocks in the catchment. 

 

Fig. 40: Logarithmic scatter plot of Na and Li concentrations in the catchment water samples in 
 comparison to world river waters collected by Huh et al. (1998) 

According to Gibbs (1970), the chemistry of surface waters is controlled by three major 

mechanisms: evaporation-crystallization, atmospheric precipitation, and rock dominance. The 

classification of waters is visualized with the help of a Gibbs diagram, which shows two 

diagonal branches representing the composition of world rivers, lakes and seas regarding the 

ratios of Na-Ca and Cl-HCO3 to salinity. Water samples from the Salar de Uyuni basin show 

the typical pattern of surface waters in arid environments (Fig. 41). Smaller streams plot in the 

field of rock dominance, meaning that dissolved salts in their waters derive from the weathering 

of rocks and soils in their basins, whereby the composition depends on the relief and 

characteristics of the basins bedrock. Clearly, the influence of evaporation is visible in the 

R² = 0.6579

R² = 0.825

0.01

0.1

1

10

100

0 0 1 10 100 1,000 10,000

N
a
 [

m
M

/L
]

Li [µM/L]

Spring River

Stream Well

World rivers (Huh et al. 1998) Southern Altiplano inflows (Risacher & Fritz 1990)

Trend world rivers (Huh et al. 1998) Trend Uyuni catchment waters



Results and interpretation 

 

72 

 

mainstreams Río Grande and Río Colorado, as they plot in the evaporation field of the Gibbs 

diagram (Fig. 41). Here, samples were taken in the final part of the inflows shortly before 

entering the salar. The arrow in the Gibbs diagram for the inflows to the Salar de Uyuni shows 

their evolutionary path from the rock-dominated, medium-saline and Ca-rich endmember 

towards the highly-saline, Na-rich endmember during their flow from the mountain flanks to the 

evaporites-filled deepest part of the basin. The change in composition is caused by i) 

evaporation and accompanied increase in salinity, and ii) precipitation of CaCO3 from solution 

and the relative decrease in Ca and HCO3 (Gibbs 1970). Fig. 41 highlights, that the contribution 

of ions from precipitation is neglectible, due to the low annual amount of rainfall. Nonetheless 

its limited occurrence, rainfall plays a major role in the accumulation of ions in the salt lake, 

caused by its function as a solvent for salts accumulated at the surface in the catchment, and 

the transport of dissolved ions towards the tributaries. 

 

Fig. 41: Gibbs diagram of inflow waters showing major processes responsible for water chemistry; 
 the red arrow indicates the evolutionary path of surface waters in the Salar de Uyuni basin 

Another hint for the sources and enrichment of solutes in waters discharging in the catchment 

of the Salar de Uyuni is given by the distribution of sodium and chloride in the streams and 

springs. Spring waters with Cl < 2 mmol/L are plotting above the line of equimolarity and show 

a fairly scattered distribution (Fig. 42), indicating the absence of extensive contact time with 

older evaporates in the underground. Their composition must be affected mainly by the 

alteration of volcanic rocks due to intensive weathering processes. In contrast, spring waters 



Results and interpretation 

 

73 

 

with Cl > 2 mmol/L show a balanced Na-Cl proportion and generally high concentrations of 

NaCl, which is typical for waters leaching halite. These waters must be fed from groundwaters, 

which are influenced by the contact with subsurface halite layers. The classification of spring 

and stream waters to the groups of (1) volcanic alternation and (2) leaching of evaporites was 

also observed by Risacher & Fritz (1991a), who extensively studied the geochemistry of salars 

in the southern Bolivian Altiplano. Streams during sampling campaigns were not dried up, 

although sampling took place during the dry season. Hence, the streams cannot be exclusively 

fed by rain and surface runoff, but also by springs discharging from the flanks of the volcanic 

mountains. This explains the enrichment of Na and Cl in these waters. 

 

Fig. 42: Logarithmic scatter plot of Na versus Cl in the catchment samples supplemented by 
 analyses  from former studies (Rainwater: Risacher (1991b), groundwater Uyuni catchment: 
 Nittetsu Mining CO. (2011), groundwater central Altiplano: Ramos Ramos et al. (2012)); 
 waters plotting inside the grey shaded area were affected by the leaching of halite, water 
 plotting above were affected by the alteration of volcanic rocks 

The distribution of Na and Cl in waters leaching halite layers was also found in inflows to the 

Salar de Atacama (Boschetti et al. 2007). Rainwater from the southern Altiplano region is 

significantly lower mineralized regarding Na and Cl, showing the absent influence of seawater 

but rather the origin of southern Altiplano rainwater in the Amazon basin. Groundwaters in the 

Uyuni catchment are strongly affected by the dissolution of ancient evaporates in the 
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underground, as they plot on the line of Na-Cl equimolarity. For comparison, groundwaters 

from a study of the catchment of Lake Poopo in the central part of the Altiplano basin were 

plotted (Ramos Ramos et al. 2012). These waters, which stem from aquifers located in a 

volcanic environment, seem to contain generally less NaCl, and furthermore deviate from the 

line of equimolarity towards an excess of sodium. Another effect leading to the increase of Na 

and Cl in groundwater compared to precipitation, is the evaporation of rainwater prior to 

infiltration to the ground and the corresponding enrichment of solutes, as well as the dissolution 

of salt efflorescences in the rainwater. These thin salt crusts form at the end of the rainy season 

and occur on the surface in large areas of the catchment, especially in the floodplains. 

5.2.4 Geochemical aspects 

Altogether 12 rock samples were taken in the catchment of the Salar de Uyuni. Samples stem 

from the flanks of the volcanoes Iruputuncu, Olca and Uturuncu, which represent the 

geochemical signature of the region and are of stratovolcanic nature (Fig. 43). The integration 

of rock samples into the QAPF (Streckeisen) diagram is shown in Fig. B - 4. All analyzed rocks 

are classified as rhyolites and dacites (Table 9). This is in accordance to literature data, where 

they are described as the major rock types in the volcanic region of southern Bolivia 

(Fernández et al. 1973, Rettig et al. 1980). According to the chemical composition, all sampled 

rocks are siliceous volcanics. SiO2 contents are between 50 and 70 wt%, but mostly in the 

range of 60 wt%. Hence, most rocks are of acidic nature, belonging to one of the rock types 

rhyodacite, dacite or rhyolite. The least acidic rock, found at volcano Olca, is classified as a 

calc-alcaline andesite (field 9* in the Streckeisen diagram). In comparison to lavas from the 

adjoining Argentinian Puna and the northern Chile strato-volcano complexes, the rocks of the 

SW Bolivian strato-volcanoes are significantly more siliceous. This is assumed to be the result 

of magma generation occurring in different crustal levels (Fernández et al. 1973). Geophysical 

investigations have shown that magma generation in the southwestern Bolivian Altiplano takes 

part in the upper crust, in an estimated depth of 9 to 26 km (Ocola et al. 1971). Presumably, 

the magma in this region stems from the (partial) melting of the upper crust rather than having 

its origin in basaltic magma (Fernández et al 1973). Analyzed rocks were apparently in a low 

stage of alteration, as they do not show typical chemical characteristics of altered rocks, where 

K2O or Na2O are >6%, and SiO2 is >80% (U.S. Geological Survey & Servicio Geológico de 

Bolivia 1992). 
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Table 9: Overview of rock samples with source region and rock types according to the QAPF diagram 

 (see Fig. B - 4) 

Sample Location Description Rock type 

IRU-ROC-01 Volcano Iruputuncu Pyroclastic Dacite 

IRU-ROC-02 Volcano Iruputuncu Pyroclastic Rhyodacite 

IRU-ROC-03 Volcano Iruputuncu Pyroclastic Rhyolite 

IRU-ROC-04 Volcano Iruputuncu Pyroclastic Dacite 

OLC-ROC-01 Volcano Olca Pyroclastic Andesite 

OLC-ROC-02 Salar de la Laguna Lava Rhyodacite 

UTU-ROC-01 Volcano Uturuncu Pyroclastic Rhyolite 

UTU-ROC-02 Volcano Uturuncu Pyroclastic Rhyolite 

UTU-ROC-03 Volcano Uturuncu Lava Rhyolite 

P-1A Laguna Colorada Pyroclastic Dacite - Andesite 

P-1B Laguna Colorada Pyroclastic Dacite - Andesite 

R-02 Vicinity of stream Río 

Quetena 

Pyroclastic Rhyolite 

According to Fernandez (1973), the volcanic rocks of Cenozoic age in the SW of Bolivia can 

be divided into four units: 

1) Lavas and pyroclastics of the Rondal and Julaca formation (Miocene) 

2) Ignimbrites of the Quechua Formation (Miocene to Pliocene) 

3) Ignimbrites of the Ignimbrite Formation (Pliocene to Pleistocene) 

4) Lavas and pyroclastics of the Strato-volcano Formation (Pleistocene to Holocene) 

Lithium concentrations in the rocks range from 4 to 37 mg/kg (Fig. 44). In acidic igneous rocks, 

the element is contained in silicates and aluminosilicates replacing magnesium, aluminium or 

iron (Cannon et al. 1975). Parker (1967) reports average values from 22 to 65 ppm Li in 

igneous rocks. Hence, the samples from the SW Altiplano are not significantly enriched in Li, 

but are in accordance to Li concentrations of 16 – 65 ppm obtained by Davis & Howard (1982) 

from ignimbrites of the Ignimbrite and Los Friales Formations in SW Bolivia. Sampled rocks 

from volcano Iruputuncu and Olca show decreased concentrations of Li. Both volcanoes are 

located in the southwestern vicinity of the Salar, in a distance of about 50 km. In contrast, Li in 

rock samples from the southern catchment is about twice as high. Thus, the assumption of 

rhyolitic rocks in the southern catchment being the main contributor to lithium in the salt lake 

is confirmed by the rock analyses. 
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Fig. 43: Overview of freshwater, rock and sediment sampling sites in the catchment of the Salar de 
 Uyuni, with geological units illustrated in the background 
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Rock samples were treated by different digestion methods in order to gain information about 

the fixation of lithium to the mineral structure and its tendency to be leached. Thereby, the total 

digestion by HF serves for the analysis of the insoluble fraction, whereas the aqua regia 

digestion determines the acid-soluble fraction. Results show that a significant part of the lithium 

contained in rocks is susceptible to leaching by the weathering of surface rocks in the long 

term. 

 

Fig. 44: Li concentration in rock samples in the catchment of the Salar de Uyuni (acid-dissolved 
 fraction determines the lithium dissolved by aqua regia, total fraction was obtained by HF 
 digestion) 

Unconsolidated material analyzed for chemical composition consisted of soils and surface 

sediments sampled in the catchment, mainly from a volcanic environment, lacustrine 

sediments from the mud layer underneath the uppermost salt crust in the Salars of Uyuni and 

Coipasa, and river bed sands sampled from the shore of the Río Grande and Río Colorado 

(Table 10). 

Lacustrine sediments were eluted with deionized water (DI) prior to digestion in order to obtain 

the fraction of Li contained in salts and secondary precipitates formed after sampling. HF 

digestion served for the determination of the acid-insoluble Li fraction in sediments, whereas 

aqua regia digestion was used for determining the acid-soluble Li content. Generally, the 

content of acid-soluble components in sediments and river bed sands represents the 

exchangeable fraction, whereas the acid-insoluble components represent the general mixed 

source rocks (Tan et al. 2012). Total Li contents in sediments from volcano flanks in the Salar 

de Uyuni catchment are in the range of 5-28 mg/kg. Sediments from volcanoes Iruputuncu and 

Olca show minor concentrations, which is consistent with results from rock analyses explained 

above.  
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Table 10: Overview of soil and sediment samples for element analysis from the Salar de Uyuni and its 
catchment, and the Salar de Coipasa 

Sample Location description 

Lacustrine sediments 
  

COI-SED-A2 Shallow drill hole at Salar de Coipasa 20-25 cm depth 

COI-SED-SHORE Southern shore of Salar de Coipasa Black muddy sediment from 10 cm depth 

SLT-SED-RIO-01-1 Shallow drill hole at site RIO-01 brownish layer in 10-20 cm depth 

SLT-SED-RIO-01-2 Shallow drill hole at site RIO-01 black coloured layer in 30 cm depth 

SLT-SED-OJOS Gas emanation spot “Ojos del Salar” Reddish coloured muddy sediment 

SLT-SED-NOR-T3-1 shallow drilling in the northern 

transect of Uyuni 

Grey coloured layer, depth of 8-9 cm 

SLT-SED-NOR-T3-2 shallow drilling in the northern 

transect of Uyuni 

Brownish sediment, depth of 25 cm 

River sediments 
  

SED-RIO-GRA-1 Río Grande shore sediment 

SED-RIO-GRA-2 Río Grande 5 m distance from shore, depth 2-5 cm 

SED-RIO-COL-1 Río Colorado shore sediment 

SED-RIO-COL-2 Río Colorado 5 m distance from shore, depth 2-5 cm 

Soils from catchment 
  

IRU-BOD-01 Iruputuncu Fumarole flank; yellow, fine grained 

IRU-BOD-02 Iruputuncu Edge of volcano crater; white, fine 

grained 

IRU-BOD-03 Iruputuncu Base of volcano; reddish 

OLC-BOD-01 Olca Base of volcano; black / grey, coarse 

grained 

UTU-BOD-01 Uturuncu Base of volcano; brown, coarse grained 

UTU-BOD-02 Uturuncu Volcano flank; reddish, coarse grained 

UTU-BOD-03 Stream close to village Quetena 

Chico 

Light brown, fine grained 

 

Fig. 45: Lithium in unconsolidated sediments from the surface in the catchment of the Salar de Uyuni 
 (acid-dissolved fraction determines the lithium leached by aqua regia, total fraction was 
 obtained by HF digestion) 
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Based on the different variations of digestion (DI elution, aqua regia, HF; for details see Fig. 

20), Li concentration in different fractions of the sediment was calculated according to the 

following equations (all units are in mg/kg):  

 
𝑐(𝐿𝑖𝑠𝑎𝑙𝑡) = 𝑐(𝐿𝑖𝐴𝑅) − 𝑐(𝐿𝑖𝐴𝑅−𝐷𝐼)  (14) 

 𝑐(𝐿𝑖𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒) = 𝑐(𝐿𝑖𝐴𝑅−𝐷𝐼) (15) 

 𝑐(𝐿𝑖𝑠𝑖𝑙𝑖𝑐𝑎𝑡𝑒𝑠) = 𝑐(𝐿𝑖𝐻𝐹−𝐷𝐼) − 𝑐(𝐿𝑖𝐴𝑅−𝐷𝐼) (16) 

Here, 𝑐(𝐿𝑖
𝑠𝑎𝑙𝑡

) defines the fraction of Li in salts precipitating secondarily from the brine that is 

contained in the sediment pores. 𝑐(𝐿𝑖
𝑠𝑎𝑙𝑡

) is calculated from the difference of Li concentration 

obtained by aqua regia digestion 𝑐(𝐿𝑖𝐴𝑅) and the Li concentration in samples which were eluted 

with DI prior to aqua regia digestion (𝑐(𝐿𝑖𝐴𝑅−𝐷𝐼)). The concentration of this fraction is expected 

to reflect the Li concentration in the interstitial brine 𝑐(𝐿𝑖
𝑏𝑟𝑖𝑛𝑒

) occurring at the sediment 

sampling site and depth. In fact, a positive correlation exists between 𝑐(𝐿𝑖
𝑠𝑎𝑙𝑡

) and 𝑐(𝐿𝑖
𝑏𝑟𝑖𝑛𝑒

) at 

all locations (R²=0.84). The concentration of Li in the exchangeable fraction 

𝑐(𝐿𝑖𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒) corresponds to the Li fraction obtained by samples eluted with DI prior to aqua 

regia digestion (𝑐(𝐿𝑖𝐴𝑅−𝐷𝐼)). According to Martin et al. (1991), leaching using HCl presumably 

determines easily leached ions from cation exchange sites in clay minerals, carbonates and 

soluble metal oxides. In contrast, HF/HClO4 dissolution contains more resistant fractions as 

silicates and organic matter (Martin et al. 1991). The Li fraction contained in silicates 

𝑐(𝐿𝑖𝑠𝑖𝑙𝑖𝑐𝑎𝑡𝑒𝑠) was calculated as the difference of the Li concentration in samples which were 

eluted with DI prior to HF (𝑐(𝐿𝑖𝐻𝐹−𝐷𝐼)) and aqua regia digestion, respectively. The distribution 

of Li in lacustrine sediments of the Salars of Uyuni and Coipasa is shown in Fig. 46. 
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Fig. 46: Concentration of Li in different fractions of sediments of the Salars of Uyuni (SLT) and 
 Coipasa  (COI) resulting from chemical analysis after DI, aqua regia and HF extraction 

The high concentration of Li in sediments from the northeastern part (SLT-SED-NOR) and the 

delta region of the Río Grande (SLT-SED-RIO) reflects the brine chemistry at these locations. 

Not only the Li content in secondary precipitates is high, but also the exchangeable Li fraction. 

The low fraction of acid-insoluble Li shows, that the element is readily released from sediments, 

accumulating in the surrounding brine. In the delta region of the Río Grande, fluviodeltaic 

sediments permanently transported within the river load are interbedded with lacustrine layers 

steming from the sedimentation of both organic and inorganic material during the last lake 

phase. Both sedimentary units are covered by a thin salt crust, whose thickness increases and 

moisture decreases with further distance from the shore. 

5.2.5 Recent annual salt and sediment input to the salar 

The Río Grande de Lipez and the Río Colorado are the main rivers reaching the Salar de 

Uyuni, feeding the salt lake from the southern and southeastern side. They drain the cordilleras 

of Chocaya and Lipez, which host numerous up to 6,000 m high snow-capped mountains. 

During the rainy season, they mainly carry water from intense precipitation events occurring in 

the catchment. In the dry season, river flow mainly consists of spring waters carried by various 

tributaries from geothermal springs located at the mountain flanks, occasionally supported by 

snow melts. In December 2011, a diver (water level recorder) was installed in the Río Grande 
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river, about 30 km upstream from its mouth. Details about installation are contained in Sieland 

(2014). The original water level data were corrected for air pressure, which was simultaneously 

recorded on the island Incahuasi located in the Salar de Uyuni. Results are shown in Fig. 47. 

 

Fig. 47: Recorded data (EC and water level) in the Río Grande river obtained by Sieland (2014). 
 Precipitation data were obtained from a nearby meteorological station (San Pablo de Lipez). 
 Baro-compensated river level measurements run from 18.12.2011 to 14.09.2012. 

Precipitation data stem from a meteorological station in the catchment of the Río Grande, thus 

representing the amount of rainfall that is typically reaching the river. Error values occured for 

water level and electric conductivity values, when the measured water temperature dropped 

below the value of -0.5°C. In Fig. 47, the water level and the EC were corrected for implausible 

values by excluding data measured at a temperature < 0.5°C. The grey curve of electric 

conductivity shows defective values between June and July. Taking a look at air temperature 

data during the implied time span shows indeed, that minimal temperatures dropped below -

15°C at a high number of days. The graphic shows, that the water level of the river strongly 

reacts on the occurrence of rainfall events. Also, a relatively small time shift from rainfall events 

to the increase in water level is visible. With the onset of heavy rainfall at the beginning of the 

austral summer, the salinity of the water distinctly increases (Fig. 47). This is due to superficial 

salt efflourescences (salt coatings) formed by chemical and physical weathering during and 

after the former rainy season. These efflourescences occur in wide parts of the river catchment 

and are dissolved in the rainwater, which does not immediately infiltrate due to the dry 

cemented surface. Instead, it flows towards drainage channels and finally to the streams, 

carrying the solved material as well as suspended detritus. The maximum of water salinity, and 

thus the maximum load of dissolved solutes, peaked in the mid of February 2012. At the end 
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of the rainy season, when rainfalls decline in volume and intensity, the EC values decrease 

until a steady value is reached. Generally, the salinity is characterized by a low range especially 

during the dry season, indicating homogeneous conditions throughout the austral winter 

months. 

The calculation of the recent amount of solutes and especially lithium transported towards the 

salar is rather complicated. The amount of water as well as the composition of dissolved and 

suspended matter in the tributary waters reaching the salar are strongly season depended 

variables. Ballivian (1981) roughly measured the flow rate with 1 m³/s during low-level times 

and 4 m³/s during the rainy season. Assuming an average amount of 4 low-level and 8 high-

level months, the overall flow rate of Río Grande would be 2 m³/s and 63 Mio m³/a, respectively. 

Risacher (1991) estimated an annual discharge of 60 ± 30 x 106 m³, which corresponds to 1 - 

2 m³/s. Table 11 gives an overview of Río Grande discharges mentioned in different references. 

Based on own field observations, the flow rate of Río Colorado could be conservatively 

estimated with 1 m³/s, whereby literature data for comparison is lacking. 

Table 11: Estimation of Río Grande discharge according to different references 

Reference Low-level months  
[m³/s] 

High-level months  
[m³/s] 

Annual discharge 
[106 m³/a] 

Montes de Octa (1997)   400 

Ballivian & Risacher 
(1981) 

1 4 63 

Risacher & Fritz (1991) - - 60 ± 30 

Knight Piésold Consulting 
(2000) 

0,381 (Nov. 1997) 1,55 (Feb. 1998) 24 

The total amount of components W transported in dissolved form to the salt lake by the Río 

Grande within one year is estimated according to the following equation: 

 ∑ 𝑊 = 𝑄 ∙ 𝐶𝑑𝑖𝑠𝑠𝑜𝑙𝑣𝑒𝑑 ∙ 10−6 (17) 

Assuming an annual discharge Q of 60±30∙106 m³ with a TDS of 2 g/L and a Li concentration 

Cdissolved of 2.7 mg/L in the Río Grande, an amount of 120,000 ± 60,000 t dissolved components 

including 160 ± 80 t Li is added to the brine of the upper crust per year. For the accumulation 

of ~7 Mio t of Li, it would have needed between 29,000 and 87,000 years (under the 

assumption of steady conditions), which is significantly more than the estimated 10,000 years 

which has elapsed since drying of paleolake Tauca. Not considered here is the input of Li by 

other tributaries as the Río Colorado. With a Li concentration of 1.5 mg/L and a discharge 

about the half of Río Grande, its Li input to the Salar de Uyuni should not be more than ⅕ – ¼ 
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of Río Grande input. Still, the range between 10,000 years, estimated from 14C in the brine, 

organic matter and carbonates, and at least 29,000 years determined from the salt-water 

balance of the main inflow is large. The difference is probably due to the input of Li by 

suspended sediments, which are transported especially during the wet season towards the 

Salar. 

Fig. 48: Surface of the Salar de Uyuni in August 2014 (left) and at the end of the rainy season in May 
 2011 (right); note the layer of dusty particles consisting of weathered material from the 
 vicinity of the Salar as a result of wind transport 

A parameter that cannot be estimated quantitatively due to missing data is the input of material 

by windblown dust. Strong winds occurred regularly during the field trips, especially in the 

evening hours and during storm events. In August 2014, the salt surface was covered with a 

thin dusty layer, consisting of clayey material from the surrounding floodplains and bare soil 

(Fig. 48). In contrast, the sediment layer is covered by a few mm thick, newly crystallized salt 

crust at the end of the rainy season. The chemical analysis of salt from the upper mm of the 

crust at polygons and efflorescences included the determination of the content of insoluble 

material. It showed that the percentage of insoluble matter in the uppermost salt crust is 

relatively low with 0.1 – 1 wt% in the polygon surface and 0.3 – 2.3 wt% in the efflorescence. 

Unfortunately, the mass of each sample was not sufficient for a chemical digestion and could 

thus not be analyzed for the content of e.g. Li. The sediment mainly consists of accumulated 

salts and clay, which originates from the surrounding mountains subject to weathering 

processes, and was transported to the floodplains with rivers and streams. Thus, the lithium 

content is supposed to be elevated as is the case for analyzed sediment from the delta region 

(see chapter 5.2.4). Nevertheless, though the percentage of sediment in the upper salt crust 

seems to be small, the influence of windblown dust should not be neglected in the overall 

lithium balance. The annually recurring process during geological time scales in combination 

with the large surface of the salt lake leads to a significant accumulation of lithium enriched 

material in the salt crust. 
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The annual growth of the salt crust was estimated using the following equation: 

 𝐺10,000𝑎 =
𝑇𝐷𝑆𝑖𝑛𝑓𝑙𝑜𝑤 ∙ 𝑄𝑖𝑛𝑓𝑙𝑜𝑤 ∙ 10−6

𝜌𝑠𝑎𝑙𝑡
∙

1

𝐴𝑠𝑎𝑙𝑡 𝑙𝑎𝑘𝑒
∙ 10,000 (18) 

Where 𝐺10,000𝑎 is the growth of the salt crust in mm in 10,000 years, TDSinflow and Qinflow the 

dissolved load and discharge in g/L and m³/a, 𝜌𝑠𝑎𝑙𝑡 the density of the salt crust in g/cm³ and 

𝐴𝑠𝑎𝑙𝑡 𝑙𝑎𝑘𝑒 the surface area of the salt lake in km². The growth of the salt crust, under 

consideration of only the Río Grande input, would amount to 80±40 mm/10,000 a. However, 

the total input must be much larger than that due to countless streams and channels 

transporting dissolved and suspended material towards the salt lake during the rainy season. 

5.3 Evolution of brine 

The enrichment of Li and other elements in the brine by sorption and precipitation reactions 

has been previously discussed. Following, the role of evaporation will be examined in more 

detail. The climatic and geomorphologic conditions resulting from the geographic position of 

the Altiplano and the catchment of the Salar de Uyuni explain the high significance of 

evaporational processes on the enrichment of elements in surface waters. The potential 

evaporation of 1,500 mm in this region strongly exceeds the average amount of annual 

precipitation (180 mm). This high evaporation is due to high solar insolation resulting from low 

cloud coverage most time of the year, extremely low air humidity at daytime and strong winds. 

These so-called lake - sea breezes form by differences in air pressure between salt surface 

and the surrounding land, resulting from different heat capacities of salt and soil. The following 

consideration of evaporational concentration is divided into the enrichment of Li along its flow 

path from source to sink, and the final accumulation in the pores of the salt crust. 

5.3.1 Enrichment of lithium along the flow path 

The progress of Li concentration in different compartments of the geologic and hydrologic cycle 

is shown in Fig. 49. The first stage is mechanical rock weathering, by which solid rocks are 

decomposed and made vulnerable to the processes of chemical weathering. As a result of 

chemical weathering, soils and sediments form, which cover large parts of the catchment of 

the Salar de Uyuni. At this stage, the Li concentration remains more or less constant, meaning 

that lithium is not liberated into dissolved form by the processes of physical and chemical 

weathering. A important result of weathering is the formation of secondary minerals as clay 

minerals, oxides and hydroxides. A significant enrichment of Li occurs, when surficial 



Results and interpretation 

 

85 

 

sediments are swept away by heavy rainfalls during the wet season, carried by small streams 

and transported along the main rivers towards the Salar de Uyuni (Fig. 49). It is thinkable that 

Li, contained in dissolved form in the river water, is sorbed to the surface of the clay fraction in 

fluviatile sediments. This material is then sedimented at the shores of the river bed when flow 

velocity decreases in the widespread delta regions shortly before entering the salt lake. 

Lacustrine sediments occurring underneath the uppermost salt crust, show elevated 

concentrations of Li compared to fluviatile sediments, due to the higher content of clay and the 

equilibrium, which is established between Li sorbed to the clay fraction of lacustrine sediments 

and the surrounding brine, which shows Li concentrations of more than 1,000 mg/L in the areas 

of existing and former inflows. 

 

Fig. 49: Trend of lithium concentrations in the Salar de Uyuni catchment along the path from source 
 (= rock) to final sink (= brine) 

As expected, rainwater shows an extremely low Li concentration. Hence, a large difference 

exists between Li in rainwater and groundwaters in the southern part of the Bolivian Altiplano. 

These groundwaters are already enriched in Li, because they are in contact with 1) Li-enriched 

volcanic rocks as rhyolites, ignimbrites and ash flow tuffs; and 2) hydrothermal waters of 

volcanic origin. The largest range in Li concentration (9 µg/L – 5 mg/L) occurs in the small 

streams and tributaries feeding the larger rivers flowing towards the Salar de Uyuni, which is 

due to their different origins. Some of the streams are fed by springs containing mainly 

rainwater, whereas others have a hydrothermal source and are therefore enriched in elements 

as Li and B, or have their source in local groundwater, which is naturally enriched in Li as 

Transport direction 



Results and interpretation 

 

86 

 

explained above. Sampled springs, especially thermal springs, contain Li up to 7 mg/L, 

resulting from their hydrothermal nature in a volcanic environment. Concentrations are in the 

same range as hot springs (T = 70 – 100°C) in the Yellowstone Park, USA, or in the Wairakai 

region, New Zealand (White 1957). 

Evaporation of river water along the course from the mountains to the deepest part of the basin 

contributes to the enrichment of Li in solution, because no limiting Li-minerals exist. This is 

intensified by the extremely gentle gradient in the lower part of the catchment, i.e. in the region 

of extended floodplains before entering the salar. Fig. 50 shows the profile of Río Colorado 

with a length of almost 90 km, whereby the lacustrine coastal plain extends over ¾ of the 

distance. Donselaar et al. (2013) measured a difference of only 3 m over 36 km at the Río 

Colorado, which is a gradient of 0.083‰. Further, a wide river channel goes along with a low 

water depth of about 0.5 – 1 m in average, resulting in a high water surface and thus an 

increased evaporation surface (Fig. 50). During the rainy season, this surface is even 

increased by the reactivation of abandoned river channels (braided river systems). 

 

Fig. 50: Present-day down-stream profile of the Río Colorado (adapted from Donselaar et al. (2013)) 

However, two orders of magnitude in Li concentration are between surficial catchment waters 

and the interstitial brines of the Salar de Uyuni, which cannot be the result of evaporative 

enrichment along the flow path.  
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5.3.2 Concentration during evaporation 

For the investigation of enrichment and depletion processes of main ions in the brine in the 

course of evaporative concentration the comparison to a conservative ion is helpful. Chloride, 

which is usually used for that purpose, is not suitable due to the dominance of halite in the 

salar system. Bromine is incorporated into halite only in very small quantities, and overall 

concentrations in brine are lower than for lithium. Thus, it is suitable for the analysis of the 

behaviour of other brine components with further brine concentration. Element proportions 

were compared to the curve of simple evaporative concentration. The calculation of this line 

was based on the ratio of an ion to bromine in the main inflow Río Grande and its trend 

according to a simple evaporative concentration, disregarding precipitation, sorption or other 

enrichment and depletion processes. Ratios were calculated as mean values from 4 samples 

taken in winter and summer seasons of different years and showed deviations between 3 and 

6.0%, implying a high stability of main ion composition over time. Ratios of Mg, K, Li and SO4 

to Br in Río Grande water were 50, 40, 4, and 400. The trends of main ions in brine compared 

to Br are shown in Fig. 51, divided in well and transect brines, from Uyuni and Coipasa. 

Sampling in the Río Grande delta area is, since several years, impossible due to the status of 

the region as military restricted area and the all-season humidity leading to the impossibility of 

an access by car. That’s why, values from Rettig et al. (1980) for the Río Grande delta were 

included in the evaluation.  

Sodium concentrations constantly decrease with increasing bromine, due to the precipitation 

of halite in the saturated solutions (Fig. 51). The decrease of sodium goes along with nearly 

stable chloride contents with further brine concentration, caused by the strong predominance 

of chloride over sodium at the onset of halite precipitation. The slope of sodium decrease is 

shallower for the Coipasa brines, which could be due to higher sodium and lower chloride 

concentrations in Coipasa inflows. In fact, when comparing the molar ratio of Cl to Na in the 

main inflow to the salars, the value of 0.8 for Río Lauca (calculated from river analyses in 

Lebrun et al. (2002)) is lower than 1.0 for Río Grande. Waters sampled in the Río Grande delta 

show an opposite trend of increasing bromine with increasing sodium. These brackish to salty 

waters, deriving from the inflow of the major river, lack significant contact time with the halite 

layers of the salar crust further north, so that these waters are not yet saturated with respect 

to halite. The sharp rise reflects the dissolution of the halite when reaching the surface of the 

salt crust. With further brine concentration, Na concentrations in the delta brines approximate 

to the concentrations in pore brines. 
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Fig. 51: Bromine concentration in well brines and transect brines of the Salars of Uyuni and Coipasa
 plotted against the content of major ions in solution; values from the Río Grande delta were
 added for comparison 

The evaporation line in Fig. 51 is the calculated enrichment of the perspective element or 

species under the assumption that the Br concentration has not changed over time. On 

contrary to Na, Ca and SO4 the elements Mg, K and Li plot significantly above the evaporation 
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line, giving evidence that these elements are enriched by means of evaporation and an 

additional process (e.g. via sorption on clay minerals). 

Magnesium is correlated to bromine with increasing concentration (R2 = 0.7) indicating that 

the element is not removed from solution by the formation of precipitates. Compared to the 

evaporation line, Mg is as said before additionally enriched in the pore brines. The 

concentrations of Uyuni transect brines plot above those of well brines indicating that the 

additional source of Mg delivers more Mg in the transect brines. Rettig et al. (1980) found a 

significant loss of magnesium compared to evaporative concentration in the Uyuni brines and 

even more in the Coipasa brines, and speculated about the uptake of Mg by silicates and 

carbonates. This could not be confirmed at all by these investigations. 

Potassium concentrations plot as well above the evaporation line. This is especially the case 

for the transect brines. Thus, one can state that K and Mg behave similar. This could be due 

to the release of K and Mg from clay minerals, which are transported as suspended matter in 

the inflows and which are not included in the analytical procedure of river water due to filtration 

of samples. Two processes of K release are conceivable: the release of exchangeable K from 

clay mineral layers, and the dissolution of the clay mineral itself. 

Lithium behaves partly similar to Mg and K regarding the enrichment in the brine compared 

to Br. However, in the first stages of brine concentration, Li plots on the evaporation line 

indicating the conservative behaviour of Li due to evaporation. At about 150 mg/L Br, Li plots 

above the evaporation line indicating an additional Li source. In the Salar de Coipasa transect, 

this effect is contrary and the curve of Li/Br is significantly flattened, pointing to the removal of 

Li from brine. On contrary, transect brines of the Salar de Uyuni plot above the evaporation 

line over the entire enrichment path pointing to the role of clay sediments in the enrichment of 

Li in surface-near parts of the brine-filled layers. This is supported by the fact that fluid samples 

were continuously taken from mud-dominated layers in about 50 cm depth. The trend of Li/Br 

in the delta brines above the slope of evaporative concentration shows, that the enrichment of 

Li apart from evaporative concentration takes place at the entry of the river water to the all-

season flooded regions at the southern margin of the salar. 

Especially the delta brines are depleted in sulphate compared to the inflow, which is due to 

the precipitation of gypsum. This theory is supported by the plot of Ca/Br, which shows a strong 

decrease of Ca with evaporative concentration (Fig. 51-f), especially in the first stages of 

enrichment. According to Jones et al. (1977), part of the observed sulphate loss can be 

explained by bacterial sulphate reduction. The process is evidenced in the H2S-rich, lacustrine 

mud accumulations separating the halite layers and in the characteristic smell of the pumped 

brines. The removal of sulphate takes place as H2S or by the formation of iron sulphides 

(Eugster et al. 1979). The precipitation of sulphate bearing minerals should play a minor role 
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in the removal of the ion, as PhreeqC modelling shows that most sulphate minerals are 

undersaturated in the brines. Saturation indices for epsomite, mirabilite and kieserite are in the 

range of -1.6 to -0.5, -0.9 to -0.4, and -2.6 to -1.3, respectively.  

The sharp decrease of calcium in the delta brines is the result of gypsum precipitation due to 

oversaturation with respect to gypsum in the brine. Indeed, pore brines of the salar show 

slightly positive saturation indices for gypsum. Flattening and converging of the curve with 

increasing bromine reach equilibrium with approximately 300 mg/L Ca in the brine. The 

formation of gypsum is accompanied by the precipitation of calcite, which explains the 

significant removal of HCO3 from the delta brines.  

The Río Grande transports large amounts of suspended particles, which is intensified 

especially during and after the rainy season caused by the extended flooding of the upstream 

plains at the southern shore of the Salar de Uyuni. Suspended particles are not considered in 

the analysis of dissolved ions by IC and ICP-MS. Thus, suspended matter is not included in 

the overall balance. During the flow of the Río Grande a separation of suspended sediments 

takes place, depending on the size of particles and flow velocity of the river. Larger particles 

are deposited near the shore of the salt flat, where flow velocity is strongly reduced, whereas 

small particles are transported towards the center of the salt lake. When being in contact with 

brine, chemical weathering goes along with the constant decomposition of clay particles and 

the release of incorporated ions as Mg, K and Li. The specific conditions like the high salinity 

of the pore brines, combined with the high duration of reaction time, extreme day / night 

temperature variations are effective weathering factors. The dissolution of the clay mineral 

lattice could be a mechanism of K and Li release from clay minerals. Lithium shows a similar 

behaviour as K and Mg regarding the ratio to Br in brine, though to a minor extent. This might 

be explained by the minor amount of Li sorbed to clay minerals in comparison to K and Mg, 

and the preferential exchange of K and Mg. 

A possible source of error could be, that the line of evaporative concentration does not exactly 

represent the K / Br ratio in the main inflow. Sampling in the Río Grande took place about 40 

km upstream of the delta to the Salar de Uyuni. In the course of waterflow until that sampling 

spot K in the water could be subject to sorption reactions with clay particles contained in the 

river water. Hence, the K / Br ratio changes significantly along the river course from source to 

sink. Tributaries, which were sampled as far as 100 km upstream from the Río Grande 

sampling site, should therefore show higher K / Br ratios. Indeed, this is the case for most 

streams, where ratios up to 200 were measured, compared to 40 in Río Grande.  

SLT-NOR-A1 marks a location, which differs significantly regarding chemical composition 

compared to other transect samples. Not only main ions as Mg, K, Li, Br and B are significantly 
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higher, but also minor elements like Rb, V, and Cs. A systematic error by means of a constant 

relative deviation does not occur, hence a dilution error can be excluded.  

Generally, well brines show a larger variation in ion / bromine ratios and are wider spread than 

transect brines, which have higher correlation coefficients. This may be due to the facts, that 

the transect samples stem from a relatively limited area, and were taken from a similar depth, 

compared to well brines, which origin from widespread locations on the salar and from depths 

differing between 0.5 and 12 meters.  

Coipasa pore brines show differences in the ratio of Br to Na, K, Li and SO4 with increasing 

brine concentration. Ca concentrations are generally lower, leading to the assumption, that the 

major amount of Ca has been removed from solution by the precipitation of gypsum, leaving a 

brine becoming more concentrated in sulphate due to evaporation. A similar origin of the 

transect brines in the northern part of Uyuni and the eastern part of Coipasa could not be 

confirmed by the chemical analyses. K and Li concentrations deviate, especially with 

increasing brine concentration (Fig. 51). 

Gas emanation spots, locally called “Ojos del Salar” (= eyes of the Salar) occur in the salt crust 

at the eastern margin, about 1 km from the shore. These spots are characterized by open brine 

pools, where a crystallization and formation of a salt crust is inhibited by permanent flow of gas 

bubbles from the subsurface (Fig. 52). The open pools are filled with a brine comparable to the 

interstitial brine in the salt crust. Analyses showed that the TDS is about 15% lower than in the 

salt crust brine, indicating a freshwater source from the underground. Brine temperature is 

twice as high as brine from a near well (SLT-COL), which is due to the influence of solar 

insolation. CO2 is the major component in the emerging gas bubbles according to the lab of 

the mineralogical department of TUBAF (oral communication). The low pH of 5.8 supports this 

observation. The hypothesis that groundwater rich in volcanic gases (CO2) is forced to the 

surface at the interface between fresh groundwater and the brine of the salar is based on the 

Ghyben-Herzberg theory. However, due to the high density of the brine the interface is rather 

flat (approximately with a ratio of 1 to 4). The lithium content of 340 mg/L is significantly lower 

than in the nearby analyzed brine (LiSLT-07-SAL = 560 mg/L), which supports the mixture of brine 

with feeding freshwater sources. Water in the pools is strongly enriched in iron, values reach 

40 mg/L compared to less than 200 µg/L in the well brines. 
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Fig. 52: “Ojos del Salar” – gas emanation spot located at the eastern margin of the Salar de Uyuni 

5.3.3 Evaporation on the salt crust 

In order to investigate the correlation of high Li concentrations in the brine with the occurrence 

of all-season wet regions on the salar, a Landsat image (December 2001, band 5) highlighting 

moist and water-covered areas was overlapped with the map of lithium distribution (Fig. 53). It 

is remarkable, that both the southern and the northern regions, where Li concentrations are 

highest, are characterized by a wet surface, which exists throughout the year (December is 

the final month of dry season). It is obvious, that the enrichment of Li in the brine correlates to 

the moistness of the upper salt crust and the duration of water coverage on the salt surface. 

 

Fig. 53: Lithium contour lines as result of kriging plotted on a Landsat TM image (band 5) from 
 December 2001 highlighting moist areas of the salar surface as dark shades 
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Altogether 23 spots on the Salar de Uyuni and Coipasa were sampled for the uppermost cm 

of the salt crust, whereby at 13 locations the salt efflorescences at polygon borders could also 

be sampled. Especially in the northern part of Uyuni the brine table is very shallow, in only a 

few cm depths. Hence, the salt surface is all-season wet due to capillary rise of interstitial water 

which impedes the formation of polygons and the associated building of salt efflorescences. At 

most locations the salt surface was covered with a fine layer of dust, which was especially 

distinct in the dry season of 2014, compared to the years before. In order to diminish the error 

when analyzing the salt composition, the percentage of the insoluble residue was determined 

and included in the mass balance. The pH value of the dissolved salt solutions showed little 

variation and was in the range of 8.3 – 8.8. The sum of dissolved elements and insoluble 

residues amounted to 91 – 98% of the initial weight, implying an analytical error between 2 and 

9%. Thereby, the error inversely correlated with the percentage of NaCl in the sample. Thus, 

it is assumed that the missing amount to 100% is due to measurement uncertainties of the Na 

and Cl concentrations. As Na and Cl sum up to more than 95 wt% of the sample, already small 

analytical deviations in the range of 5% have a high influence on overall balance. A further 

source of error could be crystallization water contained in the mineral polyhalite, which is not 

removed by drying at 100°C and results in a falsified balance. The content of a specific ion in 

the salt was calculated according to the following equation: 

 𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛  [
𝑚𝑔

𝑘𝑔
] =

𝑐 ∗ 𝑉 ∗ 1,000

𝑚
 (19) 

Here, c is the concentration of an ion [mg/L] as measured with IC, V the volume of solvent [L] 

and m the initial weight [g]. The composition of crust and salt efflorescences is comprised in 

Table A - 11. The content of water-insoluble residues was in the range of 0.1 to 2.3 wt%, and 

mainly consisted of fine-grained wind-blown dust particles. Compared to the salt crust, 

efflorescences are strongly enriched in elements as Li, Mg and K, which is illustrated in Fig. 

54. 
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Fig. 54: Contents of Li, Mg and K in the upper cm of salt crust and salt efflorescences at polygon 
 borders of the Salar de Uyuni 

Literature values for the composition of the upper crust, which is located above the brine table, 

are not existent. Ericksen (1977) reported lithium concentrations between 1 and 60 ppm for 35 

salt core samples from all over the Salar de Uyuni, but these samples stem from layers which 

are saturated with brine, and the distribution of elements, including lithium, probably reflects 

the composition of the circumjacent brine. 

During the rainy season the surface of the salar is flooded by rain water to a depth between 

10 and 50 cm. Thereby the water body behaves dynamic, meaning that it moves in 

dependence of wind direction and speed. Field observations showed that the system reacts 

very quickly to an increasing occurrence of wind, leading to a rapidly varying thickness of water 

cover. During this time, the uppermost centimeters of the salt crust are dissolved. 

 

Fig. 55: Shallow, but closed water coverage on the surface at the Salar de Uyuni in May 2011 (left), 
 and advanced stage of desiccation: collection of residual water along the polygon borders 
 (right) 
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Field observations showed, that the polygons themselves with their specific shape and size 

persist during the time of water coverage (Fig. 55, left). Only the salt efflorescences at the 

polygon borders are completely dissolved. At the end of the rainy season the surface water 

quickly evaporates due to intense solar insolation which is supported by strong winds. 

Remaining water, which is now strongly enriched in lithium, potassium and magnesium due to 

the precipitation of halite, is collected at the polygon borders (Fig. 55, right) and infiltrates 

because of the high porosity along these lines. Hence, the brine table is filled up with a strongly 

enriched solution, leading to the accumulation of Li and other solutes in the brine over large 

time scales. 

When the salt surface completely dried out, it turns into a very compact cemented crust of 10 

– 20 cm thickness, which impedes the underlying brine from capillary rise to the surface. The 

ascent of brine is now restricted to the margins of the polygons, which do not completely close 

in the course of crystallisation and hardening of the uppermost crust at the beginning of the 

dry season. Capillary rise forces the brine to ascent along the polygon borders, until the final 

brine table is reached. Attaining the surface the water quickly evaporates, and the included 

salts completely precipitate according to their solubility coefficients. Hence, lithium and other 

solutes as Mg and K should be strongly enriched compared to the surficial salt crust within the 

polygons, which was confirmed by the analyses performed (Fig. 54). 

 

Fig. 56: Li and K concentrations in the salt efflorescence in relation to the underlying brine 
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It could be assumed as well, that the composition of the salt efflorescences reflect the 

underlying brine composition. In order to investigate a possible correlation, the concentrations 

of Li and K in the salt efflorescences were compared to the underlying brine, taken from the 

shallowest well of the particular location. However, a significant correlation could not be 

observed (Fig. 56). 

The quantitative mineralogical composition of the uppermost crust and salt efflorescence was 

determined by a calculation rule, which is also implemented in the software ZECHMIN-7 

(Bornemann et al. 2008). The composition of main geochemical components Na, Mg, K, Ca, 

Cl and SO4 in the sample is the basis for the calculation of the main mineral phases halite, 

carnallite, sylvite, polyhalite, gypsum and kieserite. Based on a second chemical extraction 

with pure ethanol, only carnallite is desolved and the Mg (alk. ex.) content of this extraction 

solution is used for calculating the carnallite content. The analysis of a salt core from the drilling 

location SLT-01-A by the BGR in 2010 showed that the concentration of Mg (alk. ex.) in the 

salt approximates the content of total Mg (Mgges) in the upper cm’s of the salt crust (Schmidt 

2010). Thus, the extraction step was left out and the content of carnallite was calculated using 

Mgges. The calculation template, which was implemented in an excel file, is illustrated in Fig. 

57. When the value for the rest of a component was negative, it was set to 0, in order to avoid 

negative values for resulting minerals. In the samples, the minerals calculated by that 

procedure summed up to between 97 and 102%, with an average of 99%. Hence, residues of 

components, which could not be assigned to a mineral phase, are rather small and negligible. 

The mineralogical composition of the salts is shown in Table A - 12. Decimal places are 

software based and were not used for interpretation. 

 

Fig. 57: Calculation template for the quantification of the mineralogical composition of sampled salts 
 (modified after Bornemann et al. 2008) 

In average, halite makes up 94 wt% of the salt surface, but only 83 wt% of the efflorescences. 

Efflorescences show significant contents of carnallite (5 - 20 wt%), sylvite (0 - 8 wt%) and 

kieserite (0.6 – 3 wt%), and minor amounts of gypsum (~0.8 wt%).This is the result of the 

processes happening during the drying of the salt crust at the end of the wet season and the 

capillary rise of brine described above. 
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The distribution of halite, carnallite and kieserite correlates significantly to the concentration of 

lithium in the evaporite samples (Fig. 58). A possible explanation of the relationship between 

Li, K and Mg may be based on fluid inclusions that frequently occur in precipitating salt minerals 

during evaporation, reflecting probable increased Li, K and Mg concentration in the brine. 

Another possibility could be the precipitation of lithium as lithium carnallite (LiCl∙MgCl2∙7H2O) 

with increasing concentration. In Schmidt et al. (2009) is mentioned that the formation of lithium 

carnallite occurs during evaporation of brines from salt lakes in South America, however 

without further information or citations. On the other hand, the formation of lithium carnallite 

from crystallization experiments in the laboratory, whereat lithium carnallite precipitates by 

cooling down an artificial MgCl2·6H2O- and LiCl-solution (Schmidt et al. 2009) and under 

evaporation conditions embedded in Li production processes (An et al. 2012). It is questionable 

whether these laboratory/technical conditions are transferable to the conditions of the Salar de 

Uyuni. The precipitation of Mg in form of kieserite from the brine is accompanied by a very 

probable precipitation of Li2SO4, explaining the correlation of Li and kieserite contents in the 

salt. The concurrent precipitation of Li and Mg as sulphates was also observed at evaporation 

studies of Salar de Uyuni and Salar de Atacama brines (Ogawa et al. 2014). This process is 

one of the complicating factors of Li recovery from Mg rich brines. 

 

Fig. 58: Distribution of halite, carnallite and kieserite in the evaporite samples with lithium 
 concentration (closed symbols: polygon surface; open symbols: salt efflorescences) 
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5.4 Quality assessment 

The results of chemical analyses using different methods must be evaluated critically using 

common quality control standards. A special emphasis must be put on the analytical challenge 

of highly saline brines and the associated adaptions of sample preparation and instrumental 

devices. 

5.4.1 Correction of field parameters 

The electrical conductivity of the salar brines usually exceeded 200 mS/cm, which is the upper 

limit of the used measuring device (Hach HQ40D). Although the device displayed values above 

the upper threshold, the reliability of these data must be doubted. Thus, laboratory tests with 

dilution series of three brines with varying chemical composition were performed. TDS values 

were transformed from g/L to g/kg by the use of the density, which was measured 

simultaneously by a portable DMA density meter at each dilution step. Data for measured EC, 

density and calculated corresponding TDS of a dilution experiment with saturated NaCl 

solution and 3 brines are comprised in Table A - 13. 

 

Fig. 59: Measured EC values over the brine concentration range of 10 to 100% (values of NaCl at 
 20°C are from Lide (1994)) 

The resulting Uyuni brine dilution curves show a similar trend to the curve of pure NaCl (Fig. 

59). Generally, EC values in the brines are up to 10% higher. Differences between the sample 

brines and in comparison to NaCl are the result of a varying chemical composition by means 

of main ions in solution. Dilution series show, that the HACH HQ40 device for measuring the 

EC of water can be used for brines extending the upper limit of the instrument, at least to a 

value of ~240 mS/cm, without producing random numbers. The dilution of sample prior to 

0

50

100

150

200

250

0 50 100 150 200 250 300

E
C

 [
m

S
/c

m
]

TDS [g/kg]

NaCl SLT-08-CEN-A-0511 SLT-09-RIO-A-1110 SLT-01-COL-B-0909



Results and interpretation 

 

99 

 

determining the EC, in order to stay below the upper range, is not recommended, as the trend 

of TDS with EC is not linear at higher salinities (Fig. 59). 

Oxygen solubility decreases with increasing salinity. For the correction of oxygen values 

measured in the field, salinity correction factors fcorr were applied (see chapter 4.4). Correction 

factors were in the range of 0.055 to 0.32, and thus lowered the measured O2 contents 

significantly. 

5.4.2 Quality of analytical data 

The standard deviation as a measure for the precision of determinations using the ICP-MS 

device at a dilution of 1:200 was 0.49% (Li), 0.43% (B), 0.75% (Mg), 0.70% (Ca), 0.32% (Br) 

and 0.35% (Rb). Thereby, the standard deviation of an ion increased with its concentration in 

the brine. The accuracy for Li, determined by the difference of the theoretical and measured 

value of a pure 1 ppm Li standard, is 3.9% for the ICP-MS. 

The ionic balance as a measure for the analytical error of an analysis was calculated from the 

deviation of the summed equivalent concentrations of cations and anions. Errors in the brine 

samples were mainly in the range of ± 5%, which is acceptable regarding the required high 

dilutions. It is conspicuous, that brine analyses from 2010 are generally lacking cations in 

solution, leading to a negative error. A closer look to the chemical composition reveals, that Na 

concentrations are ~15% lower than in samples from the other years, buther other ions do not 

differ significantly. Presumably, Na determined by IC in brine samples from 2010 were subject 

to analytical inaccuracies. The error in stream and spring waters is between ± 4%. Samples 

with errors exceeding that range do mostly lack a complete chemical analysis, with missing 

values for e.g. HCO3
- or SO4

2- leading to the falsification of the ionic balance. 

5.4.3 Analysis of saturated brines 

For sampling, in-situ and laboratory analysis of brines with salinities in the range of 250 – 350 

g/L, adaptations to the specific conditions of the fluid must be performed. For the low-flow 

pumping of brines from wells for sampling, submersible pumps are more convenient than 

classical suction pumps, which are susceptible to the aspiration of air due to the high density 

of the brine. This in turn leads to the falsification of oxygen concentrations, being significantly 

higher than expected. The preparation and chemical analysis of saturated brines requires 

adaptations in the procedure. This comprises the pipetting step, the choice of an appropriate 

dilution and the specific parameters of the analytical device. Piston-stroke pipettes, as used 

for dilution of the samples, are usually adjusted by using distilled water as medium. When 
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pipetting solutions with a higher density, the volume of liquid aspirated into the tip is lower than 

the set volume. In this case, the density of the brines amounts to ~ 1.2 g/cm³, which results in 

a deviation of -0.2% compared to the set volume (Ewald 2005). The high viscosity of brines 

enhances the remaining of a small droplet in the pipette tip, especially when pipetting small 

volumes. For the evaluation of pipette precision a pipette test according to DIN EN ISO 8655-

6 with the brine was performed. The systematic error for the 20 µL piston stroke pipette 

was -0.69%, which varies within the acceptable range of ± 1%, according to DIN 8655. 

Dilution factors (DF) of 200 and 1,000 were chosen for the ICP-MS. The factor of 200 was the 

smallest possible to prevent the instrument from damage by high sodium and chloride 

concentrations. Unfortunately, numerous elements in lower concentrations (i.e. rare earth 

elements) fell below the detection limit at this minimum dilution. The dilution of 1000 was 

necessary to stay in the calibration range for major ions as K, Mg and Li. The relative deviation 

increases with decreasing pipetting volume, thus it seemed reasonable to work with 

intermediate dilutions in order to reach a DF of 1,000. 

5.4.4 Comparison of IC and ICP-MS  

The concentrations of Li, Ca, K, Mg and Br in water were determined with both IC and ICP-

MS. The results were compared regarding accuracy and precision, in order to select the 

appropriate method for the analysis of solutions with a high excess of Na and Cl over other 

ions. K and Mg exceeded the upper calibration range for ICP-MS even at the higher dilution of 

1:1000, so that values of IC had to be used for evaluation. The bromine peak at IC 

measurements was mostly covered by the high sodium peak, so that a reliable calculation of 

Br concentrations could not be performed. The same applied for Ca, whose peak could not 

clearly be distinguished from the subsequent Mg peak. Thus, values of ICP-MS were used for 

the evaluation of Br and Ca. Lithium seemed to be determinable by the use of both methods, 

in the concentration range that prevailed in the 1:200 – 1:1,000 diluted brine samples. 

However, deviations in Li between both methods were in the range of 0.5 to 12%, in the SLT-

09-RIO samples even up to 20%. It is known, that the measurement of lithium by ICP-MS is 

affected by the concentrations of other ions in solution as Na, Mg, Cl and K (Misra & Froelich 

2009). Previous investigations showed, that Na and K can strongly enhance the signal due to 

spectral overlapping, while Cl depresses it (Dai et al. 2015, Bond & Canterford 1971). The high 

deviation in the SLT-09-RIO samples could be the result of the specific brine composition at 

this location, characterized by higher Mg and K concentrations compared to other sampling 

locations at the Salar de Uyuni. IC measurement of Li runs the risk of peak overlap between 

the Li and the Na peak, as retention times are close together (Li: 3.9 min, Na: 4.9 min). The 

ratio of Na/Li is up to 400 in brine samples, leading to the possible coverage of the Li peak and 
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the consequent underestimation of Li concentrations in the brine. A strategy to overcome 

spectral interferences and peak overlaps could be the addition of a similar ionic composition 

as in the samples to the standard solutions used for calibration. However, a whole series of 

standard solutions with differing compositions would be required in order to serve the high ionic 

variations in the brine samples. 

 

Fig. 60: Comparison of different methods for lithium determination in the brine (ICP-OES analysis 
 was performed at the BGR Hannover, IC and ICP-MS analysis at TU Freiberg) 

Parallel to own measurements, brine samples were analyzed for main chemical composition 

at the Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover. The applied method 

was ICP-OES for Li concentrations. The comparison shows, that results from this method are 

comparable to own analyses, and often the result is located in between the values of IC and 

ICP-MS, as is the case for SLT-09-RIO and SLT-06-NOR (Fig. 60). Thus, for the evaluation of 

Li concentrations, the average of obtained IC and ICP-MS results were used. 

0

200

400

600

800

1,000

1,200

1,400

L
i 
[m

g
/L

]

ICP-OES

IC

ICP-MS



 

102 

 

6 Summary, discussion and outlook 

The Salar de Uyuni became a matter of public interest in the course of developing new deposits 

for the demand of lithium in the electric mobility sector. This industrial branch is increasing 

rapidly, and present suppliers will not be able to serve the market sufficiently in future. The 

Salar de Uyuni contains reserves of about 7.0 Mio tonnes of lithium (Sieland 2014) in the 

uppermost crust, which is more than one third of worldwide deposits in salt lake brines. 

However, the processes leading to the enrichment of lithium in the salt crust and its specific 

spatial distribution in the Salar de Uyuni are not yet completely understood. The present work 

should help improving the knowledge about potential sources, pathways and accumulation 

mechanisms of lithium and other solutes in the pore brine of this salt lake. 

Environmental samples, which form the analytical base of this work, comprise fresh waters 

from streams, rivers and springs in the catchment of the Salar de Uyuni, brines from varying 

places and depths of the salt lake, rocks mostly of volcanic origin, sediments and soils formed 

by weathering of the bedrock, lacustrine sediments from mud layers within the salt crust, and 

salt material from the surface of the crust. The large amount of samples was subject to various 

methods of chemical analyses, depending on the particular purpose of investigation. In order 

to localize the spatial extent of Li and other solutes’ supply to the Salar de Uyuni, the superficial 

catchment was determined using spatial remote sensing data in form of SRTM datasets. The 

size of the catchment as a result of delineation with ArcHydro is 63,000 km² in total, and 

encompasses several subcatchments where smaller salt pans and playas exist. The geologic 

nature of the catchment is characterized by volcanic deposits as ignimbrites, pyroclastics and 

lava sheets at the higher situated borders and flanks of volcanoes, and merges into surficial 

unconsolidated sediments, salt deposits and lacustrine material in widespread flood plains, 

which attend the main tributaries and rivers feeding the salar. The question of a hydraulic 

connection between the Salar de Uyuni and the Salar de Coipasa could not be entirely solved, 

but certainly existed during past times and obviously still exists during precipitation intensive 

years. The transport of Li-enriched waters from the Salar de Coipasa to the Salar de Uyuni is 

likely, as balance calculations regarding the total superficial input of elements and their actual 

occurrence in the pore brine showed. 

Brines from the Salars of Uyuni and Coipasa are of NaCl type, with a total mineralization 

between 260 and 360 g/L. For the investigation of brine evolution, element to bromine ratios 

were compared to progression of simple evaporation of the average Río Grande water. K and 

Mg behave similar, as both elements’ concentration plot above the line of simple evaporation 

with further brine concentration. Probably, K and Mg are not removed from solution by the 

formation of precipitates, but are rather released from clay minerals by ion exchange leading 
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to their enrichment in the pore brine. Lithium behaves similar to K and Mg, whereby the 

enrichment in relation to bromine is even higher in the transect brines compared to the well 

brines. The fact, that fluid samples in transects were taken from muddy and clayey layers in 

about 50 cm depth, supports the theory of clay minerals having an important role in the 

enrichment of Li in surface-near parts of the brine-filled layers. The distribution of lithium in the 

Salar de Uyuni was interpolated using ordinary kriging with a spherical semi-variogram. In the 

south, high concentrations occur in the Río Grande delta region directly at the margin of salt 

crust and fluviatile sediments. To the east, concentrations decrease rapidly, because the 

transport direction of lithium containing surface waters and suspended load is rather to the 

northwest. The delivery of lithium by the Río Colorado does not lead to the enrichment of lithium 

in the pore brine of the delta region. In the northern site, lithium shows contents in the range 

of 1.5 g/L along a strip-shaped, about 10 km wide zone parallel to the 2-3 km distant shore. 

Obviously, the accumulation of lithium does not happen only by the input of lithium enriched 

waters of tributaries, but also by the enrichment of the element directly inside the salt crust. A 

significant brine composition change with depth is not observed in most wells, which points to 

the existence of stable environmental conditions over the last 10,000 years since drying of 

paleolake Tauca and the formation of the uppermost salt crust. 

The investigation of 14C in brine shows a stable stratification of brine without significant density 

and temperature driven flow within the salt crust. The brines in the uppermost salt layer are 

between 6,200 and 13,340 years old and correspond in age to the surrounding evaporites, 

leading to the assumption that the uppermost brines are formed concurrently with the salt crust. 

However, a local mixing of the brine with freshwater feeding from groundwater aquifers 

especially near the shore of the salar was observed by the analysis of δ2H and δ18O in the 

brines. The distribution of stable isotopes also show the strong influence of evaporation, even 

smaller tributaries feeding the Río Grande are enriched in heavy isotopes of H and O. The 

effect of evaporational concentration leading to the enrichment of lithium in the brines could 

also be observed by the analysis of superficial salts from the upper crust. Salt efflorescences 

are significantly enriched regarding Li, K, Mg and other ions compared to the surface within 

the polygons. The enrichment of Li in brine occurs all-season along shrinkage cracks at 

polygon borders, where brine rises up, water evaporates and NaCl precipitates, leaving a 

solution even more concentrated in Li and other solutes as Br, B, K and Mg. This process is 

more intensively taking place in regions, where the water stays longest at the end of the rainy 

season, leading to an all-season humid surface and a shallow brine table, where capillary rise 

of brine is facilitated. Thus, lithium concentrations are highest in the northern and southeastern 

areas of the salt pan, where the salt is moist throughout the whole year (Fig. 53). 

Analyzed rocks, mostly of rhyolitic and dacitic type, show moderate lithium concentrations in 

the range of 4 to 37 mg/kg. SiO2 contents of ~60 wt% point to a low stage of alteration. In 
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average, more than 50% of contained lithium was released from the mineral structure by the 

digestion with aqua regia. It can be concluded, that rock types occurring in the Salar de Uyuni 

catchment are a substantial supplier of lithium by the intensive physical and chemical 

weathering due to the specific environmental conditions. Increased lithium concentrations in 

rock and sediment samples from the volcano flanks south of the salar indicate, that the 

southern catchment is the main supplier of lithium to the salt lake. In lacustrine sediments, the 

high lithium contents in the northeastern and southern parts reflect the brine chemistry in these 

regions. Here, significant amounts of the element were released by the aqua regia digestion, 

indicating that lithium could be incorporated in the clay mineral fraction of lacustrine sediments. 

Clay minerals (smektites) do not tend to dissolve under neutral pH and moderate temperature 

conditions (Hofmann et al. 2004). Hence, the release of lithium does not mainly occur by 

weathering and associated dissolution of clay minerals, but by exchange of ions with the 

surrounding brine. 

The high concentrations of dissolved Li in the main tributaries Río Grande and Río Colorado 

as well as some streams feeding them have their source in weathered rhyolites and ignimbrites 

occurring in the catchment, combined with a significant contribution from hydrothermal 

systems existing in the subsurface of the volcanically marked region. The last-mentioned factor 

is confirmed by extraordinary high Li contents in sampled (thermal) springs in direct vicinity of 

the Salar. However, estimated Li resources in the uppermost salt crust are too high to be only 

the result of river input in dissolved form. Presumably, a part of lithium input happens by the 

transport of particulate matter in the river load, which is strongly intensified during the rainy 

season, where river discharge and content of suspended sediments increase significantly. This 

is due to the annual hydrological and geochemical cycle in the catchment of the Salar de Uyuni. 

During austral winter, surficial rocks are subject to intensive physical and chemical weathering 

resulting from the combination of high temperature differences and strong solar insolation. The 

generated detritus and unconsolidated material are then transported along the drainage 

system towards the main tributaries. Extended floodplains upstream of the southern shore 

serve for the slowdown of water masses and sedimentation of detrital material with associated 

separation according to particle size. The release of lithium is thought to be the result of ion 

exchange, when sediments are compacted and get in contact with the shallow brine table. This 

process, working together with the enrichment by capillary rise of brine described above, 

explains the extraordinary enrichment of lithium in a limited spatial extension in the southern 

part of the Salar de Uyuni, in relation to its total size. 

In summary, the following conditions and processes happen at the Salar de Uyuni, resulting in 

the occurrence of Li enriched brines: 
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1.  Occurrence of rhyolitic bedrock and ignimbrites typical for volcanic environments with 

moderate to elevated contents of Li. 

2.  Hydrothermal activity in the catchment with discharge of hydrothermal, Li enriched 

waters to the surface by means of springs; associated to that is the mixture with 

groundwater and thus, elevated Li concentrations in groundwater of the region. 

3.  The occurrence of an endorheic basin, where drainage from a large catchment is 

collected during the rainy season. 

4.  The occurrence of intensive physical and chemical weathering, which is triggered by 

the specific climatic conditions of the region (heavy rainfalls during wet season, high 

day/night shifts in temperature, strong solar insolation, low air humidity); this leads to 

the transport and accumulation of sediments and solutes into the salar. 

5.  The properties of the salt surface, where brine rises up by capillary forces along the 

shrinkage cracks between polygons and is concentrated in Li by evaporation and 

precipitation of salt efflorescences. 

6.  The occurrence of fault systems underneath the salt pan and the catchment, which 

enable hydrothermal fluids to rise from deeper strata and provide a possible migration 

path for lithium enriched waters. 

7.  The occurrence of Li-enriched clay minerals by weathering of the bedrock, their 

transport with the tributaries towards the salt lake and the release of Li by ion exchange 

reactions. 

8.   The existence of a similar salt lake in the vicinity, from where the supply of Li-enriched 

waters by overflow or a subterraneous connection is likely.  
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6.1 Comparison to other salt lakes 

The question, why some salt lakes are strongly enriched in lithium, whereas others show no 

considerable concentrations, must be regarded by the comparison of major site characteristics. 

Table 12 summarizes the main geographic, climatic, geological, and chemical conditions of 

selected salt lakes, playas and salt pans all over the world. They all share the characteristic of 

being the deepest part of a closed basin, where evaporation strongly exceeds precipitation, 

which is reflected in the generally high aridity index in these regions. The relation of basin area 

to lake area is generally high, so that large masses of tributary waters, dissolved ions and 

suspended matter are transported towards the lakes. Most basins are located in volcanically 

active regions, where volcanic rocks are commonly occurring and, by weathering processes, 

provide the minerals for the accumulation of large evaporate beds. Also, hydrothermal springs 

or geothermal activity are characteristics, which are shared by most salt lakes considered. 

However, differences can be observed as well. Most salt lakes with significantly enriched 

lithium brines are located at altitudes above 1,000 m. This is especially the case for salars in 

the lithium triangle, as they are part of the Altiplano between the Andean cordilleras. It is 

conspicuous, that several salt lakes are located above fault systems. Faults provide the path 

for hydrothermal, in solutes enriched fluids to rise along cracks from deeper strata, and thus 

are a possibility for the migration of Li to the surface.  

Table 12: Hydrological, chemical, geological and geochemical characteristics of selected salt lakes 
 with brines containing significant amounts of lithium 

 Lake area Basin area Elevation T (Ø) Köppen1 Rainfall Evaporation Brine type Source2 

 km² km² m °C  mm/a mm/a   

Great 
Salt Lake 

4,400 86,896 1,280 10.5 Csa 186 1,800 Na-Mg-Cl 7 

Clayton 
Valley 

72 1,342 1,298 13 BWk 90-130 760-1,370 Na-Cl 7; 12 

Salar de 
Coipasa 

2,218 145,279 3,661 8 BWk 320 1,316 Na-Cl 5, 9 

Salar de 
Uyuni 

10,000 60,000 3,656 9.3 BWk 180 1,500 Na-Cl 6 

Hombre 
Muerto 

600 4,000 3,968 6.7 ET 55-70 1,100 Na-Cl 4; 7 

Zabuye 243 16,768 4,400 0.2 ET 200 2,300 Na-Cl-CO3 8 

Salar de 
Atacama 

3,000 18,100 2,300 13.9 BWk 39 2,600-3,200 Na-Cl 1; 7 

Tuz Gölü 1,600 16,000 925 11 Csb 350 1,175-1,390 Na-Cl-SO4 3; 11 

Dead Sea 1,023 44,000 -415 24 BSh 90 2,000-3,000 Mg-Na-Cl 2; 7; 10 
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Li in 

brine 
Bedrock / Basement Li sources Characteristics of basin 

 ppm    

Great Salt 

Lake 

30-60 Volcanic unknown Fault system underneath salt lake 

Clayton 

Valley 

100-

300 

Volcanic, sedimentary (clays: 

smectite, illite; halite, gypsum), 

carbonates and clastics 

Weathering, leaching of 

volcaniclastics and ash-fall 

tuffs, geothermal 

Interbedded fine grained sediments and 

halite, ash layer, clays (hectorite), fault 

systems 

Salar de 

Coipasa 

320 Volcanic Weathering, leaching of 

volcanic rocks 

Volcanic features, evaporitic sediments, 

Gypsum diapirs 

Salar de 

Uyuni 

100-

1,500 

Volcanic Weathering, leaching of 

volcanic rocks, hydrothermal 

springs 

Extended floodplains with clayey 

sediments, Gypsum diapirs, 

intrabasinal faulting 

Salar de 

Hombre 

Muerto 

100-

700 

Ignimbrites, tuffs from volcanic 

eruptions of Cerro Galán 

Leaching of volcanic deposits 

(ash-flow tuffs), geothermal 

waters 

Volcanic features, Fault system 

underneath salar, ulexite, clay minerals 

(smectites) 

Zabuye 700-

1,000 

- Mainly geothermal waters; 

volcanic, lacustrine, 

sedimentary rocks 

LiCO3 as natural salt precipitate 

Salar de 

Atacama 

1,000-

7,000 

Volcanic, evaporites 

(Cordillera de la Sal) 

Weathering of volcanic rocks Clastic and evaporitic sediments; 

domes of gypsum and rock salts; Fault 

system underneath salar 

Tuz Gölü 200 Rhyolitic tuffs, ignimbrites, 

metamorphic rocks 

unknown Major fault zone east of lake; alluvial 

deposits (lacustrine, clays), gypsum 

outcrops 

Dead Sea 17-21 Neogene to quaternary 

sediments, thick evaporate 

fillings 

Hypersaline thermal springs, 

remnant of earlier brine body, 

enrichment by interaction with 

clay minerals 

Laminates of aragonite, halite and 

detritus; basin is situated in the offset of 

longitudinal faults; halite karst, 

sinkholes 

1Aw – tropical wet savanna; BWk – arid, cold desert; BWh – arid, hot desert; ET – polar tundra; Csa – temperate, 

dry, hot summer; Csb – temperate, dry, warm summer; BSh – semi-arid, hot steppe 

21 - Boschetti et al. (2007), 2 – Nissenbaum (1977), 3 - Camur & Mutlu (1996), 4 - Godfrey et al. (2013), 5 - Lebrun 

et al. (2002), 6 - Risacher & Fritz (1991b), 7 - Warren (2016), 8 - Zheng & Liu (2009), 9 - Munk et al. (2016), 10 – 

Salameh & Al-Saber (1999), 11 - Voigt (2014), 12 – Munk et al. (2011) 

Geophysical investigations showed that also the quaternary lake deposits of the Salar de Uyuni 

are offset by various faults, which are particularly distinct at the eastern side of the salar 

(McGeary et al. 2003). Also, the brine-filled basins of the Clayton Valley and the Salar de 

Atacama are located along active intra-basin faults (Warren 2016).  
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6.2 Environmental issues 

Since several years, the national mining corporation Comibol (Corporación Minera de Bolivia) 

is planning and constructing a pilot plant for the production of lithium carbonate and potassium 

chloride from the interstitial brine. The complex consists of various evaporation pans, to where 

the brine is pumped from wells (Fig. 61). These pans serve for the sun-powered precipitation 

of halite, silvinite, carnallite and bischofite, before the Li- enriched brine is transported to the 

plant to be undertaken to several steps of purification. For the connection of the producing 

plant on the salt lake to the shore a 17 km long dam for the purpose of a road was constructed. 

The absence of breaktroughs impedes the transport of inflowing water masses from the Río 

Grande during and after the rainy season, which leads to the accumulation of water to the east 

of the road (Fig. 61). 

 

Fig. 61:  System of evaporation pans  near the Río Grande delta for the extraction of elements from 
 the brine by the national mining corporation Comibol (image taken by the Copernicus 
 Sentinel- 2B satellite on 17 May 2017 and provided by ESA1) 
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In August 2017, an area of approximately 170 km² of the Salar de Uyuni was covered by 

evaporation pans and buildings for production and processing, which is the 14-fold extent of 

the size in 2014.Several factors give raise to strong doubts in the project’s success. First, 

unfavourable climatological conditions with an intensive rainy season and a comparably short 

dry season lead to the incomplete evaporation of the brine and its re-dilution by rainwater. 

Second, the high Mg/Li ratio results in tremendously higher material and cost efforts, compared 

to other locations of Li extracting facilities like the Salar de Atacama. The sparse infrastructure 

and missing possibilities for the further processing of the lithium carbonate are other factors 

driving up costs and increasing environmental impacts. The onsite production of Li2CO3 needs 

water and this can only be supplied by groundwater. Fossil groundwater resources are 

decreasing rapidly, and recharge is slow due to the arid climate. The water consumption of the 

plant competes with regional agriculture and the open-pit mining of silver, zinc and lead in San 

Cristóbal (50,000 m³ H2O / day). Massive groundwater pumping from freshwater aquifers near 

the Salar would result in the lowering of the waterlevel and a shift of the saltwater / freshwater 

interface towards the surrounding, leading to the salinization of potable water. Lagunas at the 

shore and in the floodplains of the delta regions inhibit various animal and plant species, which 

would suffer from the drying of the lagunas due to the lowering of the groundwater table. The 

floodplains in the delta region, serving as breeding area for the rare Andean flamingo, are 

considered a Ramsar site, which is a convention for the protection and conservation of 

wetlands (UNESCO 1971). The sensitivity of the region to interventions brought up by 

economic interests must lead to the development of mining techniques minimizing the negative 

consequences for nature and inhabitants. Modern approaches, as the cone technology 

developed in collaboration of scientists from the TU Bergakademie Freiberg and the University 

of Potosí, could be an option for economic and environmental friendly pre-enrichment of lithium 

and other valuable elements considering as well local population and tourism. 

  



Summary, discussion and outlook 

 

110 

 

6.3 Recommendations for future research 

The present thesis comprises a large volume of sampling material and a variety of analytical 

methods in order to investigate the sources of lithium and processes of its enrichment in the 

salt lake brine. Nevertheless, the processes linked together for the accumulation of lithium are 

widespread, feasible analytical methods are numerous and the area of investigation is large. 

During the work and evaluation of results, several ideas for the improvement of analytical work 

and topics for future research arose. First, deeper drillings (>10 m depth) in the salt crust 

together with depth-dependent brine sampling should be performed in order to gain information 

about deeper salt layers and the chemical composition, especially lithium, of the interstitial 

solution. 

The determination of stable isotopes proved to be an appropriate method for investigating the 

water cycle in arid regions with intensive weathering. Here, the analysis should be extended 

to surface waters as streams and springs as well as groundwater in the catchment of the Salar 

de Uyuni, in order to gain a comprehensive database compared to the small amount of 

published data that is available for this region. The analysis of lithium isotopes is an appropriate 

method for the investigation of the lithium cycle. A change in the 6Li/7Li ratio points to the 

sources of lithium (as leaching from rocks, rise of magmatic fluids and hydrothermal waters) 

and processes affecting its accumulation. As evaporation does not affect the isotopic 

composition of lithium, and sorption only to a small extent, the method is useful for the 

investigation of weathering processes and associated leaching of the element from source 

rocks. 

Literature data for the Río Grande discharge show a large range; information for other inflows 

as the Río Colorado are lacking. Thus, frequent or continuous readings of discharge and 

chemical composition of inflows would give hints for the input of solutes throughout the year, 

putting a special emphasis on the difference between the dry winter and wet summer season. 

In this regard, the analysis of suspended matter transported towards the salar would help 

improving the balance of past and present lithium input and existing resources in the brine. 

The intensification of research in the region of a possible hydraulic connection of the salars of 

Uyuni and Coipasa, for example by taking water and particulate matter samples during rain 

intensive years, could help to make more precise assumptions about the past and present 

exchange of solutes. 
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Table A - 1:  Estimated world lithium resources according to source type (max. Li-contents are in ppm 
 (brines) and % (rocks) 

Type Country Name Li-content 
max.  

Approximate Li 
resources [kt] 

Sources 

Oilfield brines China Qaidam Basin 1,890 3,000 Tan et al. (2011) 

USA Smackover Formation 692 1,000 Collins (1978) 

Geothermal 
brines 

USA Salton Sea 194 316 Berthold & Baker (1976)  

Brawley 219 1,000 Gruber et al. (2011) 

Formation 
brines 

Canada Beaverhill Lake 32 515 Hitchon et al. (1971) 

Pegmatite / 
Spodumene 

Australia Greenbushes 1.6 560 Gruber et al. (2011) 

USA North Carolina - 2,600 Yaksic & Tilton (2009) 

Congo Manono 0.6 2,300 Yaksic & Tilton (2009) 

Canada - - 250 Evans (2008) 

Russia various - 1,000 Evans (2008) 

China various - 750 Evans (2008) 

Hectorite / 
Jadarite 

Usa King's Valley - 2,000 Gruber et al. (2011) 

Serbia Jadar Valley - 1,000 Gruber et al. (2011) 

Salt lake 
brines 

Argentina Diablillos 1,000 530 Larrondo et al. (2011)  

Hombre Muerto 2,000 2,500 Vinante et al. (2006)  

Salar de Olaroz 825 1,200 King (2010)  

Salar del Rincon 2,400 5,500 Pavlovic & Fowler (2004) 

Bolivia Salar de Uyuni 1,500 7,000 Sieland (2014) 

Chile Salar de Atacama 4,000 7,000 Boschetti et al. (2007)  

Maricunga - 220 Gruber et al. (2011) 

China Zabuye 1,500 2,600 Kesler et al. (2012)  

DXC 430 181 Gruber & Medina (2010) 
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Given the large amount of brine, fresh water, rock and sediment samples, a distinct sample 

notation was essential. In the following table abbreviations are explained.  

Table A - 2:  Abbreviations used for the notation of solid samples from rocks, sediments, and salt 
 crust; and fluid samples from brines, streams, springs, and wells 

Notation Explanation  Notation Explanation 

SLT Salar de Uyuni  RÍO River, stream 

COI Salar de Coipasa  SED sediment 

01-COL Colchani  ROC rock 

02-LLI LIica  SPEC Spring / well 

03-INC Incahuasi  GRA Río Grande 

04-YON Yonsa  COL Río Colorado 

05-TAH Tahua  COA Río Colcaja 

06-NOR Norte  OJO 
Ojos del Salar – gas 

emanations 

07-SAL Sal  JIR Jirira 

08-CEN Centro  TAH Tahua 

09-RÍO Río Grande delta  UTU Volcano Uturuncu 

10-PES Pescado  OLC Volcano Olca 

13-COR Corazon  IRU Volcano Irruputuncu 
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Table A - 3: Description of water sampling locations, including brine and freshwater samples (DL = 
 drilling location; multiple sampling = more than one sample from different years) 

Sample ID Description 
Coordinates (UTM, 

WGS 84) 
Multiple 

sampling 

    longitude latitude   

Screened wells     

SLT-01-COL DL "Colchani" 679816 7774574 x 

SLT-02-LLI DL "Llica" 601596 7791495 x 

SLT-03-INC DL "Incahuasi", ~ 8 km from island Incahuasi 649792 7749641 x 

SLT-04-YON DL "Yonsa" 590267 7745962 x 

SLT-05-TAH DL "Tahua", ~ 5 km from northern coast  635275 7797122 x 

SLT-06-NOR DL "Norte", northeastern part of salar 669422 7811071 x 

SLT-07_SAL DL "Hotel de Sal", ~ 10 km distance from salt hotel 694556 7742079 x 

SLT-08-CEN DL "Centro",central part of salt flat 649590 7774480 x 

SLT-09-RÍO DL "Río Grande", near to delta of Río Grande 666568 7720469 x 

SLT-10-PES DL "Pescado", near island "Isla Pescado" 625383 7777770 x 

SLT-13-COR DL "Corazon", central part of salt flat 663551 7788958 x 

Shallow drillings         

SLT-NOR-A1 shallow transect drilling  653520 7817354   

SLT-NOR-A2 shallow transect drilling  655544 7815349   

SLT-NOR-A3 shallow transect drilling  657558 7813352   

SLT-NOR-A4 shallow transect drilling  659616 7811374   

SLT-NOR-A5 shallow transect drilling  661613 7809390   

SLT-NOR-A6 shallow transect drilling  663687 7807373   

SLT-NOR-B2 shallow transect drilling  665618 7815387   

SLT-NOR-B3 shallow transect drilling  665624 7813503   

SLT-NOR-B4 shallow transect drilling  665620 7811404   

SLT-NOR-B5 shallow transect drilling  665619 7809428   

SLT-NOR-B6 shallow transect drilling  665600 7807374   

SLT-NOR-C2 shallow transect drilling  673715 7813266   

SLT-NOR-C3 shallow transect drilling  671592 7811398   

SLT-NOR-C4 shallow transect drilling  669631 7809381   

SLT-NOR-C5 shallow transect drilling  667633 7807356   

SLT-NOR-D1 shallow transect drilling  657667 7805419   

SLT-NOR-D2 shallow transect drilling  661643 7805425   

SLT-NOR-D3 shallow transect drilling  665617 7805412   

SLT-NOR-D4 shallow transect drilling  669676 7805371   

SLT-NOR-D5 shallow transect drilling  673666 7805424   

SLT-NOR-D6 shallow transect drilling  677685 7805374   

SLT-NOR-D7 shallow transect drilling  681631 7805374   

SLT-NOR-Z1 shallow transect drilling  661721 7815473   

SLT-NOR-Z2 shallow transect drilling  669663 7815372   

SLT-NOR-Z3 shallow transect drilling  677645 7809397   

SLT-NOR-T2 shallow transect drilling  650317 7820437   

SLT-NOR-T2W shallow transect drilling  668410 7819016   
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Sample ID Description 
Coordinates (UTM, 

WGS 84) 
Multiple 

sampling 

    longitude latitude   

SLT-NOR-T3 shallow transect drilling  651999 7818299   

SLT-NOR-T3W shallow transect drilling  662934 7819640   

SLT-NOR-T4 shallow transect drilling  665616 7819429   

SLT-NOR-T4W shallow transect drilling  656802 7818610   

SLT-NOR-T5 shallow transect drilling  665614 7817347   

SLT-NOR-T5W shallow transect drilling  653869 7816348   

SLT-NOR-T6W shallow transect drilling  651528 7814397   

SLT-NOR-T7 shallow transect drilling  670972 7818478   

SLT-NOR-T8 shallow transect drilling  660262 7820080   

SLT-NOR-T9 shallow transect drilling  658075 7817476   

SLT-NOR-T10 shallow transect drilling  651056 7816569   

SLT-NOR-T11 shallow transect drilling  654345 7819732   

SLT-RÍO-01 shallow drilling in southeastern part of salt flat 675614 7720920   

Rivers and streams         

SLT-RÍO-GRA main inflow to salar (south) 704491 7681573 x 

SLT-RÍO-COL main inflow to salar (southeast) 724248 7719257 x 

SLT-RÍO-TKPN tributary to salar (north) 636432 7799868   

SLT-RÍO-TAH "Río Tauha", tributary to salar (north) 636282 7800139   

UTU-RÍO-01 tributary, Uturuncu 667304 7574731   

UTU-RÍO-02 tributary, Uturuncu 673890 7546769   

UTU-RÍO-03 tributary "Quetena chico" 672615 7544216   

SLT-RÍO-R-01 tributary to Río Grande 653115 7582178   

SLT-RÍO-R-02 tributary to Río Grande 664044 7589285   

SLT-RÍO-R-03 tributary to Río Grande 641605 7630340   

SLT-RÍO-R-04 tributary to Río Grande 757269 7629465   

SLT-RÍO-SAG tributary near village "San Agustin" 642576 7629631   

SLT-RÍO-COA tributary "Río Colcaya" 651603 7811398   

Springs          

SLT-SPEC-JIR 
thermal spring at foot of volcano Tunupa (northern 

coast) 
648938 7800792 x 

SLT-SPEC-OLC Hot spring "Olca" 558107 7692772   

Others     

SLT-WELL-JIR domestic well near village Jirira 649456 7803766   

SLT-SPEC-OJO 
gas emanation spot at border area of salar, "Ojos del 

Salar" 
709130 7752722 x 

Salar de Coipasa         

COI-01-ENT coast of Salar de Coipasa 598241 7838736   

COI-WES-A2 shallow transect drilling  615314 7845211   

COI-WES-A3 shallow transect drilling  612786 7844872   

COI-WES-A4 shallow transect drilling  609834 7844449   

COI-WES-A5 shallow transect drilling  606920 7844031   

COI-WES-A6 shallow transect drilling  603887 7843607   
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Table A - 4:  Field parameters and TDS values of stream, spring and groundwater samples from 
 the Salar de Uyuni catchment 

Sample ID Type TDS T pH EMF Eh EC O2 

  
 

g/L °C 
 

mV mV mS/cm mg/L % 

SLT-RÍO-GRA-1210 stream 2.07 - 8.1 - - 3.0 - - 

SLT-RÍO-GRA-0511 stream 1.73 7.0 8.4 188 411 3.08 8.21 107 

SLT-RÍO-GRA-1211a stream 2.03 18.8 8.4 101 314 3.38 6.22 107 

SLT-RÍO-GRA-1211b stream 2.29 17.3 8.6 <59,3 - 3.47 6.45 104 

SLT-RÍO-GRA-0814 stream 1.99 14.3 8.4 24.5 213 3.1 6.69 104 

SLT-RÍO-COL-0511 stream 4.05 7.5 8.5 73 296 6.51 8.18 106 

SLT-RÍO-COL-1211a stream 38.4 - - - - - - - 

SLT-RÍO-COL-1211b stream 61.2 10.7 8.1 194 414 86 6.96 98.4 

SLT-RÍO-COL-0814 stream 4.39 10.5 8.3 39 231 7.52 7.41 105 

SLT-RÍO-TKPN-1211 stream 0.68 21.3 8.6 164 374 1.06 6.22 112 

SLT-RÍO-TAH-0914 stream 0.79 7.7 7.9 6.5 201 1.05 8.08 105 

UTU-RÍO-01-0914 stream 0.78 0.6 8.9 12.9 177 0.809 8.82 93.5 

UTU-RÍO-02-0914 stream 1.23 5.4 7.8 46.5 274 1.88 7.76 - 

UTU-RÍO-03-0914 stream 0.44 17.7 8.6 56 271 479 6.09 106 

SLT-R-01-0814 stream 0.06 - 7.4 - - 91.2 - - 

SLT-R-02-0814 stream 1.72 - 8.1 - - 2940 - - 

SLT-R-03-0814 stream 0.42 - 7.9 - - 594 - - 

SLT-R-04-0814 stream 1.73 - - - - - - - 

SLT-RÍO-SAG-1014 stream 0.55 23.9 9.0 31 240 818 6.82 129 

SLT-RÍO-COA-0914 spring 5.31 18.6 6.2 3.6 167 10.4 4.56 75.9 

SLT-SPEC-JIR-0511 spring 3.60 16.2 5.5 -78 137 6.62 1.23 16.3 

SLT-SPEC-JIR-1211 spring 3.52 17.1 5.5 80.8 295 6.12 2.51 40.6 

SLT-SPEC-OLC-0914 spring 1.13 40.1 7.7 33 176 1.57 4.94 126 

SLT-WELL-JIR-0914 groundwater 0.98 - - - - - - - 

  



Appendix A 

 

131 

 

Table A - 5:  Element analysis of catchment water samples derived by IC (all values in mg/L, n.d. = not 
 determined) 

Sample ID Li+ Na+ K+ Ca2+ Mg2+ Cl- Br- SO4
2- HCO3

- 

SLT-RÍO-GRA-1210 2.56 504 24.8 133 39.9 773 0.62 312 266 

SLT-RÍO-GRA-0511 2.63 485 23.3 151 38.5 739 0.513 279  

SLT-RÍO-GRA-1211a 2.58 514 26.5 136 38.4 755 n.d. 307 237 

SLT-RÍO-GRA-1211b 2.85 576 27.2 152 41.6 878  310 286 

SLT-RÍO-GRA-0814 2.81 448 24.6 142 36.7 743 0.305 255 330 

SLT-RÍO-COL-0511 1.38 1,207 32.8 210 50.7 1,842 0.293 698  

SLT-RÍO-COL-1211a  11,200 272 1149 651 19,239  5,689  

SLT-RÍO-COL-1211b 1.81 19,746 155 1621  35,911  3,580 123 

SLT-RÍO-COL-0814 1.38 1,324 38.3 225 58.7 1783 n.d. 766 176 

SLT-RÍO-TKPN-1211 0.056 65.2 9.20 97.9 33.9 154  144 167 

SLT-RÍO-TAH-0914 0.050 68.6 8.72 128 38.1 157 0.137 160 223 

UTU-RÍO-01-0914 0.092 76.2 10.4 57.2 73.7 n.d. n.d. 78.2 485 

UTU-RÍO-02-0914 2.01 207.7 20.8 148 46.3 450 0.486 76.7 270 

UTU-RÍO-03-0914 0.134 57.9 6.36 47.3 7.52 18.1 n.d. 42.6 257 

SLT-R-01-0814 <DL 7.43 3.96 5.52 1.61 4.23 n.d.  36.2 

SLT-R-02-0814 6.67 376 33.8 139 47.4 797 0.629 55.0 250 

SLT-R-03-0814 0.384 60.8 5.80 47.7 22.3 96.7 0.041 37.0 147 

SLT-R-04-0814 0.135 144 5.54 341 33.0 174 n.d. 1,025 n.d. 

SLT-RÍO-SAG-1014 0.838 102 10.7 27.7 23.1 143 0.066 27.3 209 

SLT-RÍO-COA-0914 6.63 1,676 142 91.9 177 2,887 0.442 237 79.1 

SLT-SPEC-JIR-0511 4.58 1,045 122 77.4 136 1,954 0.838 247  

SLT-SPEC-JIR-1211 4.43 1,030 122 71.4 131 1,865  242 43.8 

SLT-SPEC-OLC-0914 0.105 173 48.7 104 52.3 78.1 0.022 493 179 

SLT-WELL-JIR-0914 0.832 223 33.3 75.3 31.0 342 0.070 147 123 
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Table A - 6:  Chemical composition of catchment water samples derived by ICP-MS (values with < are 
 below detection limit  

Sample ID Li B Al Si P V Mn Fe Ni 

 ppb ppm ppb ppm ppb ppb ppb ppb ppb 

SLT-RÍO-GRA-1210 2,884 12.6 5.31 33.2 77.8 18.2 10.4 7.30 0.38 

SLT-RÍO-GRA-0511 2,555 10.8 11.2 28.2 99.1 10.9 31.9 17.1 0.52 

SLT-RÍO-GRA-1211a 2,685 13.5 10.8 32.7 85.1 15.9 8.94 12.6 0.53 

SLT-RÍO-GRA-1211b 2,946 14.0 13.8 29.5 112 16.0 29.9 13.8 0.76 

SLT-RÍO-GRA-0814 2,143 8.92 11.4 20.6 105 10.8 6.01 10.8 0.25 

SLT-RÍO-COL-0511 1,373 9.14 3.87 28.6 38.6 14.1 58.1 4.45 0.69 

SLT-RÍO-COL-1211a 14,840 108 15.2 20.5 148 40.0 2,818 25.0 6.57 

SLT-RÍO-COL-1211b 5,852 20.5 <10 17.1 137 22.7 1,012 121 2.78 

SLT-RÍO-COL-0814 1,517 11.5 <11 28.9 <110 15.0 9.97 <11 <1.1 

SLT-RÍO-TKPN-1211 61.8 3.70 3.15 40.7 146 6.39 14.1 20.4 0.21 

SLT-RÍO-TAH-0914 58.3 3.85 2.00 35.0 130 5.17 3.30 24.7 0.28 

UTU-RÍO-01-0914 103 0.62 6.38 41.7 69.7 20.4 3.98 10.6 0.49 

UTU-RÍO-02-0914 2,082 5.54 5.76 36.8 70.3 9.40 163 69.5 0.43 

UTU-RÍO-03-0914 127 0.73 9.19 19.8 25.1 8.02 5.79 25.2 0.20 

SLT-R-01-0814 8.73 0.310 33.2 17.7 47.3 1.85 6.86 162 <0.1 

SLT-R-02-0814 5,334 11.1 3.30 35.2 73.5 18.6 87.2 33.3 0.35 

SLT-R-03-0814 380 1.70 26.7 28.6 185 17.7 3.32 8.25 <0.1 

SLT-R-04-0814 82.5 1.57 3.05 8.6 43.5 5.42 2.72 4.27 <0.2 

SLT-RÍO-SAG-1014 806 2.44 6.71 37.3 157 13.24 4.38 17.9 0.13 

SLT-RÍO-COA-0914 7,240 11.9 <11 39.5 310 6.36 2.74 <11 6.07 

SLT-SPEC-JIR-0511 4,594 8.62 6.27 48.8 393 2.44 1,445 78.1 12.1 

SLT-SPEC-JIR-1211 5,178 9.21 5.64 50.0 404 2.86 1,616 50.7 13.1 

SLT-SPEC-OLC-0914 98.6 1.66 2.71 60.2 128 46.3 0.123 1.80 <0.1 

SLT-WELL-JIR-0914 923 3.02 2.42 42.0 712 7.22 3.02 2.53 4.93 
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Sample ID Cu Zn As Br Rb Sr Mo Cs Ba U 

 ppb ppb ppb ppb ppb ppb ppb ppb ppb ppb 

SLT-RÍO-GRA-1210 1.23 37 265 725 54.2 2,342 4.73 14.9 75.4 3.20 

SLT-RÍO-GRA-0511 <2 180 229 634 37.8 2,168 3.77 13.1 74.2 3.15 

SLT-RÍO-GRA-1211a <2 <2 244 716 57.1 2,214 4.39 24.6 71.2 3.20 

SLT-RÍO-GRA-1211b 1.21 <2 296 745 49.9 2,584 4.86 22.0 78.3 2.89 

SLT-RÍO-GRA-0814 2.19 <2 204 498 36.6 1,498 2.62 8.23 58.1 2.21 

SLT-RÍO-COL-0511 <2 111 105 444 8.32 2,628 5.84 0.78 78.9 5.32 

SLT-RÍO-COL-1211a <10 <10 426 6,048 78.2 30,430 87.6 9.04 193 44.9 

SLT-RÍO-COL-1211b <10 <10 190 1,497 55.0 25,680 35.8 7.01 296 8.75 

SLT-RÍO-COL-0814 <11 79.2 109 451 12.1 3,213 7.93 0.470 58.0 6.14 

SLT-RÍO-TKPN-1211 <2 <2 4.75 367 11.8 714 0.902 0.06 57.6 0.791 

SLT-RÍO-TAH-0914 <1 74.7 5.83 389 9.96 615 0.926 0.04 50.3 1.14 

UTU-RÍO-01-0914 <1 10.2 46.1 45.3 46.4 648 7.90 4.09 30.4 2.89 

UTU-RÍO-02-0914 <1 1.95 360 886 74.5 1,750 2.17 66.3 61.1 0.937 

UTU-RÍO-03-0914 9.98 12.6 22.6 56.5 19.4 420 0.529 1.42 8.11 1.71 

SLT-R-01-0814 1.01 11.4 5.64 19.8 15.5 45.5 0.400 0.940 11.2 0.03 

SLT-R-02-0814 <3 <3 560 1,163 214.90 2,767 2.53 379.60 61.0 1.63 

SLT-R-03-0814 <1 9.31 206 196 21.6 287 1.46 12.4 6.64 1.44 

SLT-R-04-0814 3.82 3.26 15.1 149 1.29 4,806 0.80 0.132 18.3 3.09 

SLT-RÍO-SAG-1014 <1 <1 445 138 41.4 389 2.50 42.7 17.0 1.61 

SLT-RÍO-COA-0914 <11 239 <2.2 2,097 379 1,937 0.547 49.8 68.5 2.22 

SLT-SPEC-JIR-0511 < 2 208 6.42 1,116 135 403 0.43 8.29 19.5 0.173 

SLT-SPEC-JIR-1211 <5 62.2 5.84 1,163 139 439 0.52 7.93 15.7 0.165 

SLT-SPEC-OLC-0914 <1 1.72 116 85.0 103 342 22.0 12.2 4.21 0.54 

SLT-WELL-JIR-0914 3.39 159 2.58 353 39.39 194 2.30 0.404 38.6 0.03 
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Table A - 7: Field parameters and TDS values of brine samples from screened wells and shallow transect 
drillings from the Salar de Uyuni (n.e. – no equilibrium) 

Sample ID TDS T pH EMF Eh EC O2 

  g/L °C   mV mV mS/cm mg/L % 

Screened wells         

SLT-01-COL-B-0909 307 5.1 7.1 -115 95.9 242 3.99 49 

SLT-01-COL-B-0511 321 10.4 7.3 -277 -56.6 243 0.89  - 

SLT-01-COL-B-1211 330 15.1 7.2 -104 - 235 0.96 15.3 

SLT-01-COL-B-0914 318 4.9 7.3 -37 160 234 0.65 7.5 

SLT-01-COL-C-0909 311 4.6 7.1 -73 138 234 3.19 38.2 

SLT-01-COL-C-0511 330 10.3 7.3 -294 -73.7 240 0.38 5.2 

SLT-01-COL-C-1211 332 8.7 7.2 <-105 - 228 1.21 15.5 

SLT-01-COL-C-0914 317 4.9 7.2 -234 -36.8 235 3.47 43.4 

SLT-01-COL-E-0909 300 4.6 7.1 -81 130 238 6.24 75.6 

SLT-01-COL-E-0511 332 9.2 7.3 -246 -24.7 238 0.37 4.9 

SLT-01-COL-E-1211 331 16.0 7.3 -111 104 232 1.01 15.9 

SLT-01-COL-E-0914 308 6.2 7.2 -116 80.4 235 4.63 58.8 

SLT-01-COL-F-0909 309 7.4 7.1 -133 77.5 227 3.68 47.7 

SLT-01-COL-F-0511 326 8.8 7.3 -157 64.6 245 4.94 66.3 

SLT-01-COL-F-1211 326 13.5 7.2 -132 85.4 228 1.23 18.4 

SLT-01-COL-F-0914 312 6.0 7.3 -104 91.9 228 4.57 57.5 

SLT-02-LLI-A-1211 330 16.3 7.1 -252 -36.9 232 1.07 17 

SLT-02-LLI-A-1112 312 11.3 7.2 -298 -78.6 237 1.42 - 

SLT-02-LLI-A-0914 309 6.8 7.1 -283 -87.5 234 0.47 5.8 

SLT-02-LLI-B-1110 293 12.5 7.0 -336 -81.0 224 0.80 11.8 

SLT-02-LLI-B-1211 327 15.8 7.1 <-230 - 233 0.89 13.7 

SLT-02-LLI-B-1112 313 7.5 7.2 -292 -68.9 240 4.40 - 

SLT-02-LLI-B-0914 311 8.1 7.2 -173 21.0 231 3.01 39.7 

SLT-02-LLI-C-1110 333 16.1 7.1 -317 -65.0 228 0.50 7.9 

SLT-02-LLI-C-1211 332 14.2 7.1 -244 -27.5 233 <1.19 18.1 

SLT-02-LLI-C-1112 317 8.0 7.2 -264 -41.5 238 2.06 - 

SLT-02-LLI-C-0914 312 6.0 7.1 -293 -96.5 232 0.44 5.8 

SLT-02-LLI-D-1110 324 16.7 7.5 -320 -68.5 227 1.70 27.6 

SLT-02-LLI-D-1211 331 14.0 7.2 -220 -3.25 232 0.28 4.1 

SLT-02-LLI-D-1112 314 10.3 7.2 -280 -59.6 239 1.64 - 

SLT-02-LLI-D-0914 315 6.3 7.2 -277 -80.7 235 0.40 4.9 

SLT-03-INC-A-0909 330 7.1 6.9 -276 -65.4 194 6.99 89.5 

SLT-03-INC-A-0511 349 11.1 6.9 -370 -150 208 0.73 10.0 

SLT-03-INC-A-1211 349 12.5 - -301 -83.1 207 0.31 4.3 

SLT-03-INC-A-1212 331 - - - - - - - 

SLT-03-INC-A-0914 336 5.7 6.7 -295 -98.1 206 5.75 71.5 

SLT-03-INC-B-0909 328 8.2 6.8 -279 -68.7 203 6.30 83.7 

SLT-03-INC-B-0511 351 11.9 6.8 -356 -137 207 1.60 22.8 

SLT-03-INC-B-1211 361 12.3 - -319 -100 206 1.30 18.7 

SLT-03-INC-B-1212 332 - - - - - - - 

SLT-03-INC-B-0914 334 7.7 6.8 -298 -104 201 2.80 36.1 

SLT-03-INC-C-0909 328 9.2 6.9 -270 -59.9 212 6.86 93.6 

SLT-03-INC-C-0511 341 9.4 7.0 -329 -108 217 1.13 15.2 

SLT-03-INC-C-1211 362 20.7 6.9 n.e. - 211 1.20 20.3 

SLT-03-INC-C-1212 333 - - - - - - - 

SLT-03-INC-C-0914 341 6.2 6.7 -325 -129 207 0.25 3.1 

SLT-03-INC-E-0909 329 7.0 6.9 -264 -53.4 209 6.94 89.4 

SLT-03-INC-E-0511 346 9.8 6.9 -371 -150 210 0.70 9.3 

SLT-03-INC-E-1211 361 15.0 6.8 -280 -64 211 0.47 7.5 

SLT-03-INC-E-1212 333 - - - - - - - 

SLT-03-INC-E-0914 331 5.5 6.8 -312 -115 208 0.48 6.2 

SLT-04-YON-1110 305 13.2 6.8 -307 -52.6 226 2.10 31.9 
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Sample ID TDS T pH EMF Eh EC O2 

  g/L °C   mV mV mS/cm mg/L % 

SLT-05-TAH-A-1110 318 15.0 7.0 -339 -86.1 239 1.10 - 
SLT-05-TAH-A-0914 319 7.9 7.0 -117 77.7 225 0.94 12 

SLT-05-TAH-B-1112 317 - - - - - - - 

SLT-05-TAH-B-0914 322 7.7 7.0 -287 -92.5 228 3.42 44.8 

SLT-05-TAH-C-1211 340 16.9 6.9 -323 -108 230 0.84 13.3 

SLT-05-TAH-D-1110 304 14.6 6.8 -353 -99.7 226 1.10 - 

SLT-05-TAH-D-0914 320 7.6 6.9 -159 35.2 224 2.64 34 

SLT-06-NOR-A-1110 320 17.2 6.9 -320 -68.8 216 1.70 28.9 

SLT-06-NOR-A-0511 338 9.5 7.0 - - 220 0.63 8.6 

SLT-06-NOR-A-1211 338 18.0 7.0 -250 -36.9 222 0.46 7.5 

SLT-06-NOR-A-0914 311 7.6 7.0 -317 -123 223 2.72 35 

SLT-06-NOR-B-1110 325 14.2 7.0 -335 -81.4 207 1.20 18.2 

SLT-06-NOR-B-0511 330 12.9 6.8 - - 213 0.98 14.5 

SLT-06-NOR-B-1211 345 15.6 6.7 -311 -95.6 211 0.94 14.5 

SLT-06-NOR-C-1110 326 14.2 6.8 -312 -58.4 213 1.30 20.1 

SLT-06-NOR-C-0511 343 12.4 6.9 - - 216 0.62 8.9 

SLT-06-NOR-C-1211 342 15.4 6.9 -227 -11.4 211 0.28 4.2 

SLT-06-NOR-C-0914 333 8.6 6.9 -267 -73.0 216 4.26 56.6 

SLT-06-NOR-D-1110 327 14.7 6.9 -314 -60.9 216 1.30 19.2 

SLT-06-NOR-D-0511 342 10.3 7.0 - - 221 0.99 13.6 

SLT-06-NOR-D-1211 344 16.2 7.0 -271 -55.8 214 0.32 5 

SLT-06-NOR-D-0914 323 7.5 7.0 -292 -97.6 221 1.37 18.3 

SLT-07_SAL-1110 312 10.4 6.9 -365 -108 199 1.70 24.1 

SLT-07-SAL-0511 351 10.7 6.9 -376 -156 205 0.42 5.7 

SLT-07-SAL-1211 344 13.9 6.9 n.e. - 205 0.69 10.1 

SLT-07-SAL-1212 339 - - - - - - - 

SLT-07-SAL-0914 339 6.2 6.8 -367 -171 207 0.83 10.3 

SLT-08-CEN-A-1110 329 15.8 7.0 -293 -40.8 240 1.50 23.6 

SLT-08-CEN-A-0511 340 9.7 7.1 -344 -124 223 0.50 6.7 

SLT-08-CEN-A-1211 343 13.3 7.8 -241 -23.4 224 1.22 18.1 

SLT-08-CEN-A-1212 321 10.3 7.1 -302 -81.6 228 5.90 - 

SLT-08-CEN-A-0914 320 5.7 6.9 -260 -63.7 226 0.44 5.3 

SLT-08-CEN-B-1110 320 11.8 7.0 -264 -8.4 240 2.26 32.4 

SLT-08-CEN-B-0511 339 10.7 7.1 -343 -124 224 0.43 6.1 

SLT-08-CEN-B-1211 341 10.0 7.0 -234 -13.3 226 0.29 3.9 

SLT-08-CEN-B-1212 322 8.7 7.1 -299 -77.1 228 6.03 - 

SLT-08-CEN-B-0914 321 8.2 7.0 -257 -63.3 225 1.11 14.3 

SLT-08-CEN-C-1110 317 12.0 7.0 -272 -16.6 244 1.80 26.4 

SLT-08-CEN-C-0511 338 10.1 7.1 -334 -114 224 1.10 15.0 

SLT-08-CEN-C-1211 339 11.6 7.1 -268 -48.8 225 0.19 2.6 

SLT-08-CEN-C-1212 322 8.4 7.1 -290 -67.8 229 5.94 - 

SLT-08-CEN-C-0914 325 5.3 6.9 -231 -33.7 224 0.43 5.2 

SLT-08-CEN-D-1110 330 11.6 6.9 -229 26.7 240 4.69 68.7 

SLT-08-CEN-D-0511 341 10.4 7.1 -319 -98.5 226 2.63 36.4 

SLT-08-CEN-D-1211 343 18.4 7.1 -222 -9.2 226 1.15 19.5 

SLT-08-CEN-D-1212 323 8.8 7.1 -189 32.8 225 7.54 - 

SLT-08-CEN-D-0914 321 8.5 7.0 -84.5 109 219 2.57 34.9 

SLT-09-RÍO-A-1110 295 12.0 6.7 -318 -62.6 186 0.80 12.1 

SLT-09-RÍO-A-0814 328 6.3 6.7 - - 199 1.15 14.3 

SLT-09-RÍO-B-1110 315 10.8 6.7 -312 -55.6 186 1.20 16.4 

SLT-09-RÍO-C-1110 293 9.7 6.7 -280 -22.7 184 3.20 43.7 

SLT-09-RÍO-D-1110 315 11.7 6.7 -326 -70.4 185 1.10 15.3 

SLT-10-PES-1110 322 13.3 6.7 -333 -78.7 213 1.80 26.7 

SLT-10-PES-1211 354 17.3 6.8 -341 -127 212 0.67 10.8 

SLT-10-PES-1212 338 - - - - - - - 

SLT-10-PES-0914 327 6.3 6.8 -308 -112 209 0.24 3 
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Sample ID TDS T pH EMF Eh EC O2 

  g/L °C   mV mV mS/cm mg/L % 

SLT-13-COR-1110 289 11.9 6.9 -355 -99.5 215 3.00 43.2 
SLT-13-COR-0511 346 12.7 7.0 - - 219 1.02 14.7 

SLT-13-COR-1211 353 12.9 6.9 no 
equilibrium 

- 220 0.49 7.4 

SLT-13-COR-0914 332 7.5 7.0 -355 -160 213 0.60 7.7 

Shallow transects         

SLT-NOR-A1-1212 349 - - - - - - - 

SLT-NOR-A2-1212 334 18.3 6.9 -276 -63.1 - - - 

SLT-NOR-A3-1212 328 17.9 7.1 -260 -46.7 219 - - 

SLT-NOR-A4-1212 320 15.7 7.2 -307 -91.7 228 - - 

SLT-NOR-A5-1212 320 15.9 7.2 -273 -57.8 227 - - 

SLT-NOR-A6-1212 320 15.1 7.2 -269 -53.1 225 - - 

SLT-NOR-B2-1212 333 21.5 6.8 -301 -91.1 216 - - 

SLT-NOR-B3-1212 323 19.1 7.1 -318 -106 229 - - 

SLT-NOR-B4-1212 317 16.1 7.1 -319 -104 233 - - 

SLT-NOR-B5-1212 321 18.4 7.1 -312 -99.2 228 - - 

SLT-NOR-B6-1212 318 16.9 7.3 -295 -80.8 234 - - 

SLT-NOR-C2-1212 340 22.0 6.8 -304 -94.6 210 - - 

SLT-NOR-C3-1212 319 18.9 7.2 -304 -91.7 232 - - 

SLT-NOR-C4-1212 320 18.8 7.1 -302 -89.6 232 <3.23 - 

SLT-NOR-C5-1212 318 17.3 7.3 -301 -87.2 237 - - 

SLT-NOR-D1-1212 318 16.4 7.2 -297 -82.4 237 2.70 - 

SLT-NOR-D2-1212 318 15.9 7.3 -292 -76.9 236 2.33 - 

SLT-NOR-D3-1212 318 15.8 7.2 -263 -47.7 232 < 1.9 - 

SLT-NOR-D4-1212 318 16.1 7.2 -290 -75.0 234 - - 

SLT-NOR-D5-1212 313 17.1 7.3 -308 -94.0 240 <1.65 - 

SLT-NOR-D6-1212 314 18.2 7.2 -298 -85.0 235 - - 

SLT-NOR-D7-1212 321 17.7 6.9 -295 -81.6 230 <1.6 - 

SLT-NOR-Z1-1212 331 21.9 7.0 -257 -47.5 217 - - 

SLT-NOR-Z2-1212 343 19.4 6.8 -256 -44.2 204 - - 

SLT-NOR-Z3-1212 328 19.2 6.9 -307 -95.0 222 - - 

SLT-NOR-T2-0914 262 10.3 6.9 105 277 229 2.11 29.5 

SLT-NOR-T2W-0914 294 10.2 6.7 109 281 230 0.40 5.2 

SLT-NOR-T3-0914 288 9.8 6.7 1.3 194 235 1.57 21.5 

SLT-NOR-T3W-0914 293 11.0 6.6 118 289 219 1.28 17.7 

SLT-NOR-T4-0914 282 9.9 6.7 125 297 231 2.08 28.7 

SLT-NOR-T4W-0914 295 10.7 6.5 -3.3 168 232 0.71 10 

SLT-NOR-T5-0914 337 14.0 6.7 -202 -13.7 203 2.31 35.2 

SLT-NOR-T5W-0914 340 17.0 6.7 -302 -137 207 3.54 56.8 

SLT-NOR-T6W-0914 335 18.0 7.0 -23.9 141 216 3.80 63 

SLT-NOR-T7-0914 285 11.4 6.4 86.3 257 225 1.45 19.7 

SLT-NOR-T8-0914 309 9.9 6.7 81 253 229 0.35 4.2 

SLT-NOR-T9-0914 326 16.4 6.8 -23.8 162 212 3.53 55.9 

SLT-NOR-T10-0914 287 10.8 6.7 37.7 209 236 2.18 - 

SLT-NOR-T11-0914 270 9.7 6.7 182 354 232 4.26 58.5 

SLT-RÍO-01-0814  322 5.5 7.0 -208 17 221 4.50 56.1 

others         

SLT-SPEC-OJO-0909 272 12.4 5.8 4 210 230 0.38  - 

SLT-SPEC-OJO-0914 279 10.2 5.9 -67.3 125 232 1.96 27.2 

Salar de Coipasa         

COI-WES-A2-0814  323 10.2 6.9 -283 -63 200 1.25 21 

COI-WES-A3-0814  336 12.1 6.9 -187 32 187 6.00 86.4 

COI-WES-A4-0814  339 10.0 6.9 -293 -72 188 2.90 40.3 

COI-WES-A5-0814  345 9.4 6.7 -273 -52 176 2.68 35.9 

COI-WES-A6-0814  344 11.8 6.8 -243 -24 182 3.03 43.1 
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Table A - 8: Element analysis of brine samples from the Salars of Uyuni and Coipasa, derived by IC 

Sample ID Li+ Na+ K+ Mg2+ Cl- SO4
2- HCO3

- Error 

  mg / L g/L g/L g/L g/L g/L mg/L % 

Screened wells         

SLT-01-COL-B-0909 268 104 6.39 5.41 183 7.93 50.7 -1.13 

SLT-01-COL-B-0511 276 111 6.47 5.61 188 8.58 - 0.53 

SLT-01-COL-B-1211 261 116 6.48 5.57 192 8.81 50.3 1.11 

SLT-01-COL-B-0914 291 108 6.01 5.51 187 10.3 - -1.02 

SLT-01-COL-C-0909 272 105 6.41 5.54 184 8.10 49.2 -0.96 

SLT-01-COL-C-0511 286 115 6.78 5.81 193 8.63 - 1.04 

SLT-01-COL-C-1211 266 116 6.58 5.70 194 8.82 51.8 1.14 

SLT-01-COL-C-0914 254 114 6.47 5.23 183 8.09 57.0 2.48 

SLT-01-COL-E-0909 257 105 6.45 5.49 174 8.11 46.3 2.00 

SLT-01-COL-E-0511 290 118 6.92 6.02 192 8.55 - 2.49 

SLT-01-COL-E-1211 261 114 6.55 5.68 195 8.87 61.9 0.18 

SLT-01-COL-E-0914 260 108 6.53 5.28 179 8.48 50.6 1.25 

SLT-01-COL-F-0909 254 107 6.45 5.50 181 8.05 47.6 0.49 

SLT-01-COL-F-0511 227 116 5.58 4.70 192 7.06 - 0.98 

SLT-01-COL-F-1211 244 114 6.16 5.27 192 8.30 63.0 0.21 

SLT-01-COL-F-0914 242 110 6.18 5.09 182 7.73 106 1.37 

SLT-02-LLI-A-1211 264 114 6.18 5.78 194 9.33 62.3 -0.05 

SLT-02-LLI-A-1112 278 112 6.43 6.84 173 13.1 71.3 5.02 

SLT-02-LLI-A-0914 258 98.8 6.52 5.91 188 9.03 67.9 -4.48 

SLT-02-LLI-B-1110 276 91.9 6.49 6.17 177 9.70 54.4 -4.45 

SLT-02-LLI-B-1211 286 112 6.85 6.37 191 9.56 67.3 0.66 

SLT-02-LLI-B-1112 280 110 7.07 7.32 175 13.1 114 4.23 

SLT-02-LLI-B-0914 288 106 7.03 6.35 182 8.92 56.6 0.64 

SLT-02-LLI-C-1110 284 100 6.93 6.52 207 11.2 66.0 -8.19 

SLT-02-LLI-C-1211 275 113 6.61 6.26 195 9.93 90.8 -0.48 

SLT-02-LLI-C-1112 284 112 7.27 7.50 176 13.2 71.0 4.74 

SLT-02-LLI-C-0914 266 108 6.58 6.06 182 8.92 65.7 0.94 

SLT-02-LLI-D-1110 298 100 7.17 6.66 198 10.6 89.2 -5.81 

SLT-02-LLI-D-1211 270 114 6.33 6.00 195 9.50 70.8 -0.07 

SLT-02-LLI-D-1112 304 112 6.44 6.89 175 12.7 72.7 4.49 

SLT-02-LLI-D-0914 250 109 6.21 5.63 185 8.85 63.7 0.15 

SLT-03-INC-A-0909 988 77.9 20.2 21.1 185 23.9 139 0.84 

SLT-03-INC-A-0511 1066 82.7 21.1 22.1 196 24.8 - 0.71 

SLT-03-INC-A-1211 1005 81.2 21.0 21.7 197 25.2 - -0.52 

SLT-03-INC-A-1212 1003 81.6 20.6 24.4 175 27.4 106 6.32 

SLT-03-INC-A-0914 967 78.4 21.2 21.2 187 26.3 - 0.13 

SLT-03-INC-B-0909 991 77.3 20.2 21.3 183 24.2 144 1.13 

SLT-03-INC-B-0511 1078 83.3 21.4 22.0 196 25.2 - 0.64 

SLT-03-INC-B-1211 1061 85.3 22.1 22.9 202 26.1 - 0.81 

SLT-03-INC-B-1212 1008 80.0 20.9 24.8 176 28.2 110 5.80 

SLT-03-INC-B-0914 989 78.5 20.5 21.2 186 25.2 155 0.77 

SLT-03-INC-C-0909 918 80.3 19.8 19.2 185 21.0 145 0.57 

SLT-03-INC-C-0511 868 90.8 18.0 17.5 193 19.6 - 1.17 

SLT-03-INC-C-1211 893 97.8 19.7 18.9 201 22.2 160 2.82 

SLT-03-INC-C-1212 1004 81.7 20.9 24.5 175 28.6 132 6.13 

SLT-03-INC-C-0914 1047 84.9 22.0 21.9 185 25.0 189 3.84 

SLT-03-INC-E-0909 950 78.7 20.0 20.1 185 22.3 137 0.52 

SLT-03-INC-E-0511 1031 83.9 21.1 20.8 194 23.2 - 0.81 

SLT-03-INC-E-1211 975 84.3 20.9 20.9 207 25.2 113 -2.21 

SLT-03-INC-E-1212 984 82.8 20.8 23.7 177 26.9 88.2 5.89 

SLT-03-INC-E-0914 933 80.0 20.7 19.8 185 23.5 139 0.99 

SLT-04-YON-1110 203 103 5.13 4.48 183 8.44 62.9 -2.61 
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Sample ID Li+ Na+ K+ Mg2+ Cl- SO4
2- HCO3

- Error 

  mg / L g/L g/L g/L g/L g/L mg/L % 

SLT-05-TAH-A-1110 398 90.1 9.09 8.66 195 13.2 136 -7.84 

SLT-05-TAH-A-0914 385 104 9.05 8.05 185 12.0 106 0.08 

SLT-05-TAH-B-1112 350 111 7.55 7.92 176 14.1 75.8 4.50 

SLT-05-TAH-B-0914 467 101 11.1 10.3 183 15.6 143 1.01 

SLT-05-TAH-C-1211 478 107 11.2 10.9 195 15.2 106 0.92 

SLT-05-TAH-D-1110 491 85.7 11.1 10.8 178 16.6 148 -3.66 

SLT-05-TAH-D-0914 492 97.4 11.6 10.8 183 16.2 125 0.16 

SLT-06-NOR-A-1110 672 83.4 15.1 14.2 187 18.4 115 -3.48 

SLT-06-NOR-A-0511 706 95.1 15.4 14.9 192 18.4 - 0.57 

SLT-06-NOR-A-1211 625 94.0 14.5 13.8 196 17.7 102 -1.59 

SLT-06-NOR-A-0914 608 87.8 14.2 12.9 177 17.4 112 -0.10 

SLT-06-NOR-B-1110 704 82.9 15.5 16.1 183 26.3 203 -2.46 

SLT-06-NOR-B-0511 728 96.3 15.8 17.0 173 26.0 - 5.88 

SLT-06-NOR-B-1211 675 90.4 15.5 16.3 193 28.8 157 -2.02 

SLT-06-NOR-C-1110 686 86.1 15.4 14.9 188 20.8 128 -2.31 

SLT-06-NOR-C-0511 713 95.9 15.6 15.1 194 20.6 - 0.30 

SLT-06-NOR-C-1211 660 93.1 15.1 15.1 196 21.5 132 -1.30 

SLT-06-NOR-C-0914 676 93.4 15.5 14.6 189 19.9 121 0.37 

SLT-06-NOR-D-1110 681 83.1 15.5 14.5 194 18.5 110 -4.95 

SLT-06-NOR-D-0511 719 96.5 15.7 15.1 195 18.3 - 0.75 

SLT-06-NOR-D-1211 647 95.7 14.8 14.6 198 18.8 120 -0.99 

SLT-06-NOR-D-0914 636 90.8 14.9 13.7 185 17.3 103 -0.03 

SLT-07_SAL-1110 503 82.3 12.5 13.3 175 27.1 212 -4.14 

SLT-07-SAL-0511 606 102 13.9 12.5 187 33.1 - -0.58 

SLT-07-SAL-1211 562 94.9 14.2 15.9 185 32.5 218 0.10 

SLT-07-SAL-1212 591 94.2 14.5 18.3 174 36.2 180 3.49 

SLT-07-SAL-0914 565 94.3 14.6 15.1 180 33.1 274 0.50 

SLT-08-CEN-A-1110 588 86.1 13.7 12.3 199 16.4 97.5 -6.67 

SLT-08-CEN-A-0511 608 101 14.0 12.7 195 15.5 - 0.63 

SLT-08-CEN-A-1211 594 104 14.1 12.9 196 14.6 127 1.85 

SLT-08-CEN-A-1212 529 98.6 13.4 13.4 175 18.5 93.4 4.58 

SLT-08-CEN-A-0914 568 96.4 13.5 10.5 183 14.8 95.6 0.46 

SLT-08-CEN-B-1110 573 85.0 13.5 12.1 191 16.1 109 -5.50 

SLT-08-CEN-B-0511 621 102 14.0 12.7 193 15.3 - 1.31 

SLT-08-CEN-B-1211 579 99.4 13.6 12.5 199 15.8 110 -0.98 

SLT-08-CEN-B-1212 588 99.8 13.7 13.9 174 19.6 89.4 5.54 

SLT-08-CEN-B-0914 542 96.1 13.3 11.2 185 14.3 93.8 0.20 

SLT-08-CEN-C-1110 560 84.9 13.1 11.7 190 16.0 102 -5.55 

SLT-08-CEN-C-0511 598 102 13.9 12.5 193 15.1 - 1.59 

SLT-08-CEN-C-1211 570 99.3 13.5 12.3 196 15.6 111 -0.59 

SLT-08-CEN-C-1212 575 99.3 13.8 13.8 174 19.5 96.8 5.29 

SLT-08-CEN-C-0914 553 97.0 13.5 11.5 187 14.6 92.3 0.23 

SLT-08-CEN-D-1110 600 90.2 14.1 12.6 194 16.9 108 -3.45 

SLT-08-CEN-D-0511 596 97.8 14.5 16.2 194 17.2 - 1.99 

SLT-08-CEN-D-1211 562 100 13.4 12.3 200 15.8 113 -1.10 

SLT-08-CEN-D-1212 562 99.4 13.5 13.9 175 19.8 98.7 5.18 

SLT-08-CEN-D-0914 544 93.3 13.2 10.9 185 17.4 100 -1.79 

SLT-09-RÍO-A-1110 972 56.8 16.6 19.4 178 21.8 120 -7.61 

SLT-09-RÍO-A-0814 1174 72.8 20.5 23.7 186 22.8 118 1.09 

SLT-09-RÍO-B-1110 1070 62.5 17.8 21.7 187 22.7 123 -5.40 

SLT-09-RÍO-C-1110 1020 57.3 15.9 18.8 176 21.6 123 -7.78 

SLT-09-RÍO-D-1110 1063 61.9 17.5 21.2 188 23.4 124 -6.51 

SLT-10-PES-1110 615 84.8 13.7 13.8 179 29.4 169 -3.48 

SLT-10-PES-1211 676 95.4 15.4 15.9 195 30.8 153 -1.34 

SLT-10-PES-1212 749 95.2 16.4 18.5 173 33.5 110 5.31 

SLT-10-PES-0914 669 93.6 15.4 14.6 170 31.3 199 2.78 
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Sample ID Li+ Na+ K+ Mg2+ Cl- SO4
2- HCO3

- Error 

  mg / L g/L g/L g/L g/L g/L mg/L % 

SLT-13-COR-1110 467 79.6 10.8 11.3 166 20.5 166 -3.57 

SLT-13-COR-0511 548 104 12.4 13.2 192 23.0 - 1.11 

SLT-13-COR-1211 527 105 12.4 13.3 198 23.0 178 0.37 

SLT-13-COR-0914 492 97.9 11.9 11.8 186 22.5 - -0.96 

Shallow transects        
 

SLT-NOR-A1-1212 1645 54.7 29.6 43.2 188 30.2 - 7.55 

SLT-NOR-A2-1212 1017 81.3 23.0 24.1 182 22.6 74.2 5.61 

SLT-NOR-A3-1212 856 86.5 19.4 21.2 179 20.8 89.5 5.68 

SLT-NOR-A4-1212 590 98.3 13.9 14.2 178 14.3 123 5.20 

SLT-NOR-A5-1212 553 99.0 13.5 13.9 178 14.1 102 5.08 

SLT-NOR-A6-1212 610 96.8 14.6 14.9 178 15.1 70.6 5.28 

SLT-NOR-B2-1212 939 83.1 20.6 24.0 179 24.5 109 5.74 

SLT-NOR-B3-1212 619 98.0 14.4 15.3 178 16.0 123 5.59 

SLT-NOR-B4-1212 546 101 12.7 13.1 176 13.3 99.9 5.61 

SLT-NOR-B5-1212 634 97.0 14.6 15.6 177 15.7 89.7 5.91 

SLT-NOR-B6-1212 521 102 12.1 12.7 177 12.9 110 5.59 

SLT-NOR-C2-1212 1068 78.3 24.5 26.2 179 30.0 82.4 5.63 

SLT-NOR-C3-1212 531 101 12.5 13.0 178 13.4 92.5 5.05 

SLT-NOR-C4-1212 555 99.1 13.0 13.8 179 14.3 97.7 4.88 

SLT-NOR-C5-1212 463 106 10.6 10.6 178 11.4 81.5 5.08 

SLT-NOR-D1-1212 456 105 10.7 10.8 179 11.9 99.3 4.54 

SLT-NOR-D2-1212 459 105 11.1 11.2 179 11.8 102 4.96 

SLT-NOR-D3-1212 500 102 11.7 11.9 179 12.7 61.4 4.45 

SLT-NOR-D4-1212 474 105 10.9 11.2 178 12.2 72.9 5.03 

SLT-NOR-D5-1212 303 112 7.03 7.08 177 8.82 76.2 5.07 

SLT-NOR-D6-1212 365 109 8.76 8.73 176 10.1 157 5.34 

SLT-NOR-D7-1212 561 99.2 12.6 13.9 178 15.9 83.2 4.76 

SLT-NOR-Z1-1212 783 90.8 18.6 19.1 183 18.3 57.5 5.07 

SLT-NOR-Z2-1212 1099 80.6 23.0 26.4 182 29.0 101 5.59 

SLT-NOR-Z3-1212 706 94.3 16.0 17.9 178 20.4 98.7 5.55 

SLT-NOR-T2-0914 238 93.9 4.78 3.69 154 5.59 36.2 1.73 

SLT-NOR-T2W-0914 376 94.7 7.24 8.84 170 12.4 117 0.64 

SLT-NOR-T3-0914 306 97.0 6.47 6.05 168 10.3 78.9 0.30 

SLT-NOR-T3W-0914 326 96.7 6.61 7.27 170 11.6 75.2 0.20 

SLT-NOR-T4-0914 260 98.5 5.19 5.33 162 10.5 45.4 1.53 

SLT-NOR-T4W-0914 338 98.1 6.75 7.32 171 11.1 89.7 0.63 

SLT-NOR-T5-0914 1126 70.9 23.4 25.6 186 28.6 146 1.13 

SLT-NOR-T5W-0914 1190 70.4 24.3 26.3 190 27.2 156 0.87 

SLT-NOR-T6W-0914 785 87.0 16.9 17.6 192 20.0 71.2 -0.39 

SLT-NOR-T7-0914 325 96.0 6.94 6.98 163 11.4 66.7 1.86 

SLT-NOR-T8-0914 267 93.5 5.31 5.88 192 11.8 66.1 -8.63 

SLT-NOR-T9-0914 856 82.4 17.6 19.0 185 20.6 121 0.97 

SLT-NOR-T10-0914 272 99.7 5.80 5.17 167 9.24 60.5 1.06 

SLT-NOR-T11-0914 202 95.1 3.88 3.44 160 7.99 48.9 -0.71 

SLT-RÍO-01-0814  630 92.8 15.8 12.8 182 17.3 128 1.08 

others        
 

SLT-SPEC-OJO-0909 345 90.8 7.92 5.52 157 7.44 634 0.53 

SLT-SPEC-OJO-0914 336 93.1 7.90 4.50 164 7.76 765 -1.03 

Salar de Coipasa        
 

COI-WES-A2-0814  328 93.8 9.98 14.6 165 38.5 221 0.49 

COI-WES-A3-0814  532 80.2 16.7 23.3 176 37.5 233 1.30 

COI-WES-A4-0814  543 81.7 17.3 23.0 176 38.4 214 1.59 

COI-WES-A5-0814  609 77.2 18.5 26.3 174 46.0 274 1.87 

COI-WES-A6-0814  600 77.2 19.3 25.9 177 41.0 214 1.99 
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Table A - 9: Chemical composition of Salar de Uyuni and Salar de Coipasa brine samples, derived by ICP-MS (values with < are below detection limit) 

Sample ID Li B Si Ca V Mn Fe As Se Br Rb Sr Mo Cs Ba 

  mg/L mg/L mg/L mg/L µg/L µg/L µg/L µg/L µg/L mg/L µg/L µg/L µg/L µg/L µg/L 

Detection limit (1:1000) 0.1 1 100 20 100 50 1,000 200 500 2 5 20 1 1 50 

Detection limit (1:200) 0.02 0.2 20 4 20 10 200 40 100 0.4 1 4 0.2 0.2 10 

Screened wells                
SLT-01-COL-B-0909 263 203 <20 - 13.9 1,020 <200 579 351 86.0 5,452 17,180 14.9 176 80.9 
SLT-01-COL-B-0511 273 243 <20 726 87.2 1,139 <200 1,187 <100 51.8 5,084 17,350 28.6 223 114 
SLT-01-COL-B-1211 273 230 <20 841 33.7 1,119 <200 706 187 63.3 4,997 15,140 13.6 200 44.2 
SLT-01-COL-B-0914 265 201 <20 815 25.7 1,273 <200 923 103 52.7 5,425 16,160 11.7 188 46.5 
SLT-01-COL-C-0909 268 212 <20 - 12.1 1,047 <200 640 357 90.1 5,548 18,360 21.3 184 91.1 
SLT-01-COL-C-0511 278 229 <20 740 78.4 1,131 <200 1,182 115 51.3 5,097 17,450 43.2 230 66.2 
SLT-01-COL-C-1211 287 226 <20 851 31.0 1,169 <200 687 305 64.7 5,210 15,770 17.3 213 22.1 
SLT-01-COL-C-0914 259 193 <20 690 24.8 1,230 <200 1003 <100 28.7 4,656 14,250 17.4 187 403 
SLT-01-COL-E-0909 259 213 <20 - 10.7 1,057 <200 624 409 96.8 5,626 18,160 28.2 182 73.8 
SLT-01-COL-E-0511 276 215 <20 738 55.3 1,103 <200 1,140 168 51.9 4,988 16,980 56.4 219 73.3 
SLT-01-COL-E-1211 292 223 <20 865 27.0 1,026 <200 664 251 66.1 5,259 15,760 18.0 196 16.9 
SLT-01-COL-E-0914 252 219 31.1 866 20.4 1,221 510 1,118 827 31.7 5,048 13,900 21.4 189 181 
SLT-01-COL-F-0909 260 208 <20 - 11.1 1,024 <200 613 452 82.4 5,510 17,430 31.9 177 61.5 
SLT-01-COL-F-0511 221 171 <20 619 43.0 770 <200 975 267 42.0 4,117 13,650 62.3 175 350 
SLT-01-COL-F-1211 267 203 <20 843 47.4 1,268 <200 914 416 60.7 5,072 15,160 33.4 211 46.9 
SLT-01-COL-F-0914 268 200 <20 807 36.7 1,188 <200 971 <100 49.3 5,287 15,710 12.4 184 175 

SLT-02-LLI-A-1211 286 235 <20 783 25.8 1,789 <200 418 218 48.4 5,472 14,270 13.8 187 25.4 
SLT-02-LLI-A-1112 269 225 <20 685 25.4 1,359 <200 873 <100 32.4 5,989 16,480 5.20 209 109 
SLT-02-LLI-A-0914 262 249 <20 756 <20 1,217 270 816 398 26.3 5,461 13,060 14.9 168 349 
SLT-02-LLI-B-1110 325 302 <20 774 73.2 707 <200 221 527 58.5 6,555 16,700 45.9 265 248 
SLT-02-LLI-B-1211 321 301 <20 827 26.0 2,572 <200 158 231 56.2 5,875 14,360 16.6 133 149 
SLT-02-LLI-B-1112 286 276 <20 708 27.7 1,193 <200 570 <100 36.2 6,212 16,010 5.48 193 123 
SLT-02-LLI-B-0914 278 320 <20 800 <20 922 361 557 <100 28.4 5,653 12,040 7.04 173 306 
SLT-02-LLI-C-1110 318 247 <20 757 25.3 1,382 <200 566 607 65.9 6,804 18,560 81.0 257 174 
SLT-02-LLI-C-1211 316 261 <20 792 23.7 1,331 <200 254 245 54.1 5,961 15,400 15.1 205 12.0 
SLT-02-LLI-C-1112 289 242 <20 678 23.7 1,392 <200 921 <100 33.6 6,253 17,560 6.27 199 111 
SLT-02-LLI-C-0914 268 260 27.6 775 <20 1,309 <200 907 562 27.1 5,604 13,540 15.8 173 725 
SLT-02-LLI-D-1110 266 214 <20 744 19.1 1,448 <200 555 472 57.1 6,238 16,710 38.1 210 144 
SLT-02-LLI-D-1211 300 239 <20 800 23.7 1,502 <200 359 265 53.7 5,642 14,900 14.2 197 73.8 
SLT-02-LLI-D-1112 278 229 <20 701 22.3 1,541 <200 944 <100 33.3 5,969 17,090 6.18 203 148 
SLT-02-LLI-D-0914 253 239 20.2 802 <20 1,383 386 768 579 24.8 5,249 13,220 16.5 172 482 

SLT-03-INC-A-0909 1,023 1,055 <20 - 17.3 1,613 <200 5,441 1,011 203 17,270 1,112 278 514 37.1 
SLT-03-INC-A-0511 1,074 992 <20 263 46.3 1,248 <200 4,654 339 174 17,880 505 133 636 11.7 
SLT-03-INC-A-1211 1,132 1,040 <20 298 22.3 1,129 207 610 276 199 17,280 488 40.2 629 <10 
SLT-03-INC-A-1212 1,054 1,017 <20 283 23.0 1,099 <200 3,842 <100 152 18,070 468 25.6 627 15.0 
SLT-03-INC-A-0914 920 897 <20 230 33.1 1,236 <200 4,487 136 129 14,610 516 51.6 612 167 

SLT-03-INC-B-0909 995 1,059 <20 - 13.7 1,313 <200 4,526 1,025 197 17,400 552 128 568 29.6 
SLT-03-INC-B-0511 1,046 975 <20 255 45.4 1,059 <200 4,212 411 174 17,380 298 156 623 12.7 
SLT-03-INC-B-1211 1,130 1,039 <20 316 20.0 1,052 <200 552 389 207 17,200 348 63.4 626 <10 
SLT-03-INC-B-1212 1,061 1,027 <20 279 26.0 1,082 <200 3,961 218 152 19,350 695 35.7 681 21.2 
SLT-03-INC-B-0914 1,103 1,073 <20 305 31.1 1,170 <200 4,609 1,709 175 17,170 851 365 676 42.6 
SLT-03-INC-C-0909 897 856 <20 - 16.1 1,198 <200 4,293 1,039 186 15,920 317 188 554 31.8 
SLT-03-INC-C-0511 840 724 <20 403 39.1 1,931 <200 3,497 433 139 13,320 7,321 154 491 108 
SLT-03-INC-C-1211 982 846 <20 441 22.4 1,578 <200 1,234 529 195 15,440 5,505 81.5 559 42.9 
SLT-03-INC-C-1212 1,034 984 <20 287 29.6 924 <200 3,698 224 153 19,030 930 34.3 672 24.8 
SLT-03-INC-C-0914 946 1,011 <20 321 26.0 931 274 4,326 767 141 15,810 927 53.5 575 251 
SLT-03-INC-E-0909 955 962 <20 - 16.1 1,845 <200 5,760 957 189 17,590 1,843 233 467 37.6 
SLT-03-INC-E-0511 997 903 <20 290 40.4 1,435 <200 5,357 398 161 16,780 901 184 567 11.0 
SLT-03-INC-E-1211 1,097 978 <20 355 22.5 1,487 <200 306 606 206 16,810 883 99.3 608 <10 
SLT-03-INC-E-1212 1,018 951 <20 315 30.8 1,493 841 5,139 256 144 18,940 999 34.9 648 19.1 
SLT-03-INC-E-0914 1,081 1,007 <20 319 31.5 1,494 <200 5,626 1,837 167 16,750 1,015 366 629 44.5 

SLT-04-YON-1110 201 186 21.7 874 18.0 250 <200 54.8 256 41.5 4,975 17,990 11.4 249 185 
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Sample ID Li B Si Ca V Mn Fe As Se Br Rb Sr Mo Cs Ba 

  mg/L mg/L mg/L mg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L 

Screened wells                
SLT-05-TAH-A-1110 383 244 21.8 600 17.2 1,030 <200 711 423 74.4 8,415 12,870 30.2 287 218 
SLT-05-TAH-A-0914 389 309 24.8 628 <20 853 362 1,229 696 46.3 7,595 10,880 26.8 252 66.6 
SLT-05-TAH-B-1112 330 215 22.1 692 24.9 1,280 <200 1,177 125 42.5 6,889 16,510 9.0 224 237 
SLT-05-TAH-B-0914 465 383 23.4 516 <20 666 235 1,307 1,035 58.6 9,121 8,655 49.8 312 66.9 
SLT-05-TAH-C-1211 523 367 <20 480 <20 1,817 <200 1,321 550 111 9,194 7,993 70.4 279 111 
SLT-05-TAH-D-1110 472 326 23.4 442 16.9 851 <200 441 496 97.2 10,590 9,208 66.8 330 176 
SLT-05-TAH-D-0914 494 363 <20 387 31.5 692 <200 378 138 58.1 8,939 7,871 25.2 298 204 

SLT-06-NOR-A-1110 632 376 23.6 425 18.3 1,532 <200 3,436 716 138 15,350 13,040 90.8 546 127 
SLT-06-NOR-A-0511 697 448 <20 390 37.8 1,756 <200 3,197 499 123 14,630 10,930 203 504 53.5 
SLT-06-NOR-A-1211 719 438 <20 490 20.0 1,679 <200 2,252 540 158 13,420 10,900 68.4 519 47.0 
SLT-06-NOR-A-0914 622 461 <20 455 21.0 1,226 303 3,468 1,141 94.3 13,070 8,610 56.8 441 83.1 
SLT-06-NOR-B-1110 624 409 27.6 309 21.1 1,303 <200 657 797 148 14,650 4,030 147 514 126 
SLT-06-NOR-B-0511 712 493 <20 304 28.2 780 <200 2,750 590 127 13,770 2,703 271 529 65.3 
SLT-06-NOR-B-1211 767 499 <20 379 21.3 924 <200 1,884 486 167 13,380 4,387 67.8 505 29.7 
SLT-06-NOR-C-1110 601 376 29.5 395 19.8 1,866 <200 1,199 806 145 15,110 9,617 150 503 112 
SLT-06-NOR-C-0511 680 446 <20 353 21.6 1,557 <200 3,170 817 123 14,210 7,271 335 459 104 
SLT-06-NOR-C-1211 757 481 <20 408 20.3 1,176 <200 1,746 597 162 13,930 6,992 69.3 524 26.3 
SLT-06-NOR-C-0914 674 442 <20 330 28.9 1,021 <200 3,514 <100 93.4 12,540 6,610 35.8 445 80.4 
SLT-06-NOR-D-1110 549 336 31.5 405 19.7 1,742 <200 2,992 756 132 13,890 11,950 142 483 121 
SLT-06-NOR-D-0511 682 430 <20 381 < 20 1,613 <200 3,028 914 121 14,510 11,130 385 478 62.5 
SLT-06-NOR-D-1211 736 447 <20 474 21.0 1,583 <200 1,827 709 160 13,490 9,556 70.4 526 23.3 
SLT-06-NOR-D-0914 631 471 <20 459 22.0 1,210 575 3,532 1,073 95.3 13,080 8,082 48.5 440 149 

SLT-07_SAL-1110 468 690 32.5 331 20.2 1,543 <200 5,751 695 131 10,640 5,202 89 596 191 
SLT-07-SAL-0511 597 955 <20 270 21.4 616 <200 6,209 968 135 9,980 1,868 385 610 21.3 
SLT-07-SAL-1211 642 1,000 <20 331 23.0 907 <200 220 589 167 10,760 1,875 70.1 656 <10 
SLT-07-SAL-1212 598 1,019 <20 267 35.1 1,940 4126 6,467 144 111 11,700 2,169 21.4 637 214 
SLT-07-SAL-0914 593 1,070 <20 266 26.2 390 <200 5,565 <100 129 11,060 1,746 35.8 620 <10 

SLT-08-CEN-A-1110 493 379 35.1 495 21.7 3,128 <200 1,076 691 94.9 11,470 9,513 118 409 80.0 
SLT-08-CEN-A-0511 573 444 <20 450 23.5 3,029 <200 2,773 1,001 83.0 10,050 8,689 408 380 40.0 
SLT-08-CEN-A-1211 654 482 <20 543 <20 2,833 <200 708.7 457 115 10,720 8,847 59.7 394 23.8 
SLT-08-CEN-A-1212 594 460 <20 489 28.9 3,254 <200 2,668 111 63.8 11,050 10,300 14.3 415 64.4 
SLT-08-CEN-A-0914 613 496 <20 486 29.4 3,164 <200 2,824 111 93.7 11,510 9,979 30.4 382 256 
SLT-08-CEN-B-1110 491 375 41.0 500 21.2 3,249 <200 1,128 707 94.6 11,440 9,581 120 405 118 
SLT-08-CEN-B-0511 588 452 <20 447 < 20 3,066 <200 2,891 1,129 85.4 10,120 9,499 469 379 41.8 
SLT-08-CEN-B-1211 647 474 <20 522 <20 2,821 <200 421 509 109 10,580 8,665 61.4 401 <10 
SLT-08-CEN-B-1212 599 464 <20 470 28.7 3,275 <200 2892 170 64.9 11,250 9,893 16.1 413 76.4 
SLT-08-CEN-B-0914 530 482 20.4 514 23.2 2,907 277 3140 995 60.3 10,050 8,287 42.1 359 172 
SLT-08-CEN-C-1110 584 393 218.1 482 29.5 3,306 <200 2,722 228 86.5 11,770 10,410 12.7 437 41.6 
SLT-08-CEN-C-0511 569 444 <20 436 20.5 3,048 <200 2,842 1,361 80.9 10,020 8,882 500 365 42.4 
SLT-08-CEN-C-1211 650 472 <20 523 <20 2,895 <200 803 540 108 10,560 8,767 55.4 396 <10 
SLT-08-CEN-C-1212 591 457 <20 467 27.4 3,275 <200 2,780 168 64.4 11,270 10,060 16.3 421 69.4 
SLT-08-CEN-C-0914 545 495 20.6 530 24.2 2,928 669 3,078 969 61.8 10,290 8,656 43.5 359 149 
SLT-08-CEN-D-1110 690 496 78.9 453 32.2 3,499 <200 869 205 81.4 11,720 10,970 29.4 420 155 
SLT-08-CEN-D-0511 567 446 <20 440 < 20 2,470 <200 2,634 1,508 84.7 9,970 7,663 566 360 40.7 
SLT-08-CEN-D-1211 637 461 <20 512 <20 3,034 <200 1,037 664 107 10,280 8,540 49.1 383 27.1 
SLT-08-CEN-D-1212 600 466 <20 464 28.6 3,367 264 1,415 183 66.3 11,290 9,642 15.6 398 130 
SLT-08-CEN-D-0914 550 429 <20 403 30.5 3,162 341 497 <100 55.9 9,380 8,199 26.2 356 131 

SLT-09-RÍO-A-1110 1,285 963 21.9 300 10.6 1,973 <200 8,959 412 225 19,320 962 84.5 581 82.5 
SLT-09-RÍO-A-0814 1,315 1,048 26.7 311 36.4 1,448 <200 9,046 962 205 16,950 1,553 279 548 84.0 
SLT-09-RÍO-B-1110 1,310 911 23.1 318 11.3 1,998 <200 8,995 548 235 19,440 816 172 563 103 
SLT-09-RÍO-C-1110 1,285 877 24.0 306 11.6 1,924 <200 2,145 636 225 18,790 745 201 552 99.0 
SLT-09-RÍO-D-1110 1,312 882 29.6 320 14.1 2,685 <200 8,924 651 233 20,090 673 226 561 142 

SLT-10-PES-1110 611 447 35.3 277 13.2 1,576 <200 546 519 95.9 13,160 4,612 142 445 66.4 
SLT-10-PES-1211 791 573 <20 320 <20 1,595 <200 240 548 121 12,700 4,914 55.4 434 <10 
SLT-10-PES-1212 735 568 <20 308 27.7 1,551 <200 2,544 <100 77.0 13,190 5,360 15.1 447 37.1 
SLT-10-PES-0914 631 584 25.4 311 21.2 1,378 274 3,894 536 70.9 11,760 3,408 56.9 450 63.7 
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Sample ID Li B Si Ca V Mn Fe As Se Br Rb Sr Mo Cs Ba 

  mg/L mg/L mg/L mg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L 

SLT-13-COR-1110 464 427 34.8 393 14.2 1,228 <200 676 418 90.9 10,730 9,352 85.7 449 105 
SLT-13-COR-0511 522 525 <20 338 22.6 1,189 <200 2,744 2,159 94.5 9,816 7,480 868 402 63.6 
SLT-13-COR-1211 575 539 <20 397 20.5 1,397 <200 269.2 578 115 9,857 7,181 52.0 412 57.7 
SLT-13-COR-0914 499 508 <20 302 27.8 991 <200 5,792 <100 65.4 9,159 6,599 25.3 425 162 

transect drillings                
SLT-NOR-A1-1212 1,486 926 <20 169 57.0 2,180 290 6,612 <100 216 26,690 2,909 92.1 1,299 128 
SLT-NOR-A2-1212 923 584 <20 335 23.0 2,932 203 4,421 <100 143 18,830 24,000 44.4 876 80.6 
SLT-NOR-A3-1212 845 552 <20 330 <20 3,096 <200 3,392 <100 131 16,720 21,190 34.2 720 71.4 
SLT-NOR-A4-1212 569 367 <20 439 <20 2,558 <200 1,664 <100 90.2 11,600 18,470 30.3 535 114 
SLT-NOR-A5-1212 569 362 <20 437 <20 1,788 <200 1,682 113 90.0 11,540 16,940 33.0 489 105 
SLT-NOR-A6-1212 599 391 <20 412 <20 1,522 <200 1,636 173 94.5 11,950 13,080 37.6 494 84.1 
SLT-NOR-B2-1212 789 506 <20 366 24.7 1,227 <200 4,753 211 125 15,570 23,730 63.0 629 147 
SLT-NOR-B3-1212 602 392 <20 409 <20 1,612 <200 2,909 246 95.4 12,140 18,740 45.8 508 108 
SLT-NOR-B4-1212 511 327 <20 442 <20 1,425 <200 1,502 236 79.9 10,450 17,380 47.6 457 94.9 
SLT-NOR-B5-1212 619 402 <20 406 <20 1,468 <200 1,968 257 98.4 12,450 15,590 51.2 525 64.5 
SLT-NOR-B6-1212 503 321 <20 478 <20 1,382 <200 1,600 272 79.6 10,260 20,610 50.4 419 113 
SLT-NOR-C2-1212 1,049 704 <20 256 <20 4,272 <200 3,991 361 170 20,650 7,296 69.7 854 55.4 
SLT-NOR-C3-1212 496 323 <20 447 <20 1,103 <200 1,605 449 80.1 10,110 16,700 59.3 443 127 
SLT-NOR-C4-1212 537 349 <20 433 <20 1,702 <200 1,497 395 85.3 10,750 16,330 58.4 464 75.4 
SLT-NOR-C5-1212 420 269 <20 532 <20 1,135 <200 1,413 462 66.2 8,656 19,490 53.4 378 154 
SLT-NOR-D1-1212 434 285 <20 521 <20 1,568 <200 1,170 461 69.6 9,010 20,120 52.1 384 122 
SLT-NOR-D2-1212 448 282 <20 506 <20 1,161 <200 1,403 459 70.3 9,091 20,480 51.5 395 168 
SLT-NOR-D3-1212 483 308 <20 481 <20 1,117 <200 1,411 473 75.9 9,886 21,220 49.7 414 158 
SLT-NOR-D4-1212 450 289 <20 490 <20 1,203 <200 1,352 529 69.3 9,080 19,630 47.9 390 166 
SLT-NOR-D5-1212 284 182 <20 679 <20 575 <200 819 556 44.0 5,863 15,930 37.5 254 214 
SLT-NOR-D6-1212 351 225 <20 586 <20 1,137 <200 1,198 519 53.6 7,084 17,060 37.6 309 192 
SLT-NOR-D7-1212 551 352 <20 400 <20 1,495 <200 1,457 505 87.9 10,320 12,520 45.7 434 76.0 
SLT-NOR-Z1-1212 740 473 <20 365 21.7 710 <200 3,675 574 119 15,350 27,320 76.4 667 115 
SLT-NOR-Z2-1212 1,008 663 <20 244 <20 2,841 <200 4,130 645 161 19,060 6,529 77.7 810 64.7 
SLT-NOR-Z3-1212 681 457 <20 319 <20 1,878 <200 1,975 717 112 13,060 9,113 66.2 567 77.9 
SLT-NOR-T2-0914 236 79.1 32.5 1,235 24.1 841 477 308 703 29.1 5,801 24,660 48.1 305 89.8 
SLT-NOR-T2W-0914 381 168 32.7 722 24.4 7,414 282 1,400 697 52.6 5,267 12,770 30.4 127 72.1 
SLT-NOR-T3-0914 352 125 <20 858 40.4 5,977 <200 211 492 58.1 5,721 22,030 62.7 235 129 
SLT-NOR-T3W-0914 328 138 21.0 736 37.9 10,180 603 920 600 47.0 4,610 13,140 27.1 109 72.4 
SLT-NOR-T4-0914 249 115 26.0 816 37.3 390 423 718 381 35.7 3,492 13,890 18.9 93.7 152 
SLT-NOR-T4W-0914 345 170 25.1 802 <20 6,863 784 619 796 50.0 5,419 14,580 23.6 145 80.9 
SLT-NOR-T5-0914 1,260 772 20.7 291 32.3 9,307 443 10,570 1,433 187 20,940 6,343 461 702 49.8 
SLT-NOR-T5W-0914 1,190 827 30.5 362 32.4 8,164 461 8,169 669 170 23,010 6,741 51.6 787 80.9 
SLT-NOR-T6W-0914 701 453 <20 407 25.0 18,390 433 1,498 1,042 97.6 13,260 12,710 95.1 505 78.1 
SLT-NOR-T7-0914 328 128 <20 764 <20 3,764 245 585 577 47.0 4,798 15,590 25.5 145 67.6 
SLT-NOR-T8-0914 281 113 27.61 843 29.1 5,009 151 544 529 36.9 3,972 14,940 39.3 105 60.3 
SLT-NOR-T9-0914 942 557 <20 392 38.9 5,797 <200 7,062 1,788 144 16,280 18,610 324 571 105 
SLT-NOR-T10-0914 294 136 20.9 908 24.6 4,970 572 193 446 41.4 5,718 17,920 24.7 248 191 
SLT-NOR-T11-0914 203 85.6 23.4 1,127 20.9 101 <200 297 338 23.7 3,577 20,180 16.7 125 55.7 
SLT-RÍO-01-0814  726 607 <20 429 35.2 3,898 <200 3,579 1,564 119 10,460 8,243 229 331 97.8 

others                
SLT-SPEC-OJO-0909 331 421 23.6 0 12.4 2,003 40610 339 643 153 8,692 18,700 44.0 1,177 57.9 
SLT-SPEC-OJO-0914 347 409 <20 819 26.6 2,030 13590 119 <100 67.0 7,513 11,970 31.9 1,275 307 

Salar de Coipasa                
COI-WES-A2-0814  354 771 <20 285 59.6 662 217 10,640 486 139 9,053 6,522 114 298 38.2 
COI-WES-A3-0814  591 1,641 <20 284 53.4 2,092 772 14,800 1,103 235 17,290 11,370 369 608 75.4 
COI-WES-A4-0814  597 1,624 <20 252 43.3 1,653 <200 12,710 1,623 254 18,700 9,974 346 684 35.3 
COI-WES-A5-0814  666 1,851 <20 221 34.6 2,325 <200 17,100 1,645 285 21,020 7,323 350 812 25.9 
COI-WES-A6-0814  628 1,783 <20 249 34.9 2,430 <200 11,040 1,708 270 20,110 5,767 334 796 53.3 
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Table A - 10: Results of isotopic analyses of brine and river samples, including sampling depth 
 and estimated distance from the Río Grande delta (n.d. - not determined) 

Sampling 
point 

Year δ18O δ2H δ34Ssulphate δ18Osulphate depth distance  

    [‰VSMOW] [‰VSMOW] [‰VCDT] [‰VSMOW] m km 

SLT-01-COL-E 2009 0.13 -45.6 13.4 14.9 7.5 75 

SLT-01-COL-F 2009 -0.01 -45.9 13.1 14.2 2.5 75 

SLT-01-COL-C 2009 0.17 -45.5 13.3 14.9 6.9 75 

SLT-02-LLI-B 2010 -0.36 -38.3 16.1 14.6 8.5 110 

SLT-02-LLI-C 2010 0.21 -35.7 16.0 14.6 3.3 110 

SLT-02-LLI-D 2010 0.02 -36.2 15.6 14.8 1.3 110 

SLT-03-INC-A 2009 3.36 -31.5 11.7 14.0 3 46.5 

SLT-03-INC-B 2009 3.27 -32.0 11.4 13.9 4 46.5 

SLT-03-INC-E 2009 3.45 -31.0 11.2 14.0 2 46.5 

SLT-04-YON 2010 -2.47 -53.5 13.2 14.3 7.4 n.d.  

SLT-05-TAH-A 2010 3.72 -27.3 15.3 14.8 0.4 97.5 

SLT-05-TAH-D 2010 4.58 -20.5 16.0 14.5 3.2 97.5 

SLT-06-NOR-A 2010 4.75 -25.7 16.0 14.0 0.6 115 

SLT-06-NOR-B 2010 4.17 -25.1 18.8 14.6 3.2 115 

SLT-06-NOR-C 2010 4.45 -25.8 14.6 14.2 2.3 115 

SLT-06-NOR-D 2010 4.63 -26.1 16.2 13.8 1.3 115 

SLT-07-SAL 2010 -0.11 -42.1 12.5 14.0 7.6 60 

SLT-08-CEN-L 2010 2.52 -27.3 13.5 13.5  71 

SLT-08-CEN-A 2010 2.46 -26.4 12.2 13.0 8.5 71 

SLT-08-CEN-B 2010 2.34 -26.6 12.3 12.9 4.3 71 

SLT-08-CEN-C 2010 2.38 -26.6 12.3 12.9 2.3 71 

SLT-08-CEN-D 2010 2.43 -26.2 12.6 13.0 5 71 

SLT-09-RÍO-A 2010 2.85 -35.7 11.3 11.4 2.5 11.25 

SLT-09-RÍO-B 2010 2.80 -35.8 11.5 11.9 2 11.25 

SLT-09-RÍO-C 2010 2.79 -36.1 11.2 12.1 3.3 11.25 

SLT-09-RÍO-D 2010 2.83 -36.0 10.6 12.1 1.3 11.25 

SLT-10-PES 2010 2.97 -21.2 14.7 13.5 1.3 82.5 

SLT-13-COR 2010 3.60 -23.1 14.4 14.2 5.5 86 

SLT-RÍO-GRA 2010 -8.81 -77.5 5.8 9.1 0.1 0 
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Table A - 11: Composition of Salar de Uyuni evaporate samples from the upper cm of the salt crust, 
 samples with * are from salt efflorescences; IR = insoluble rest; boron values from 
 ICP-MS analysis, rest from IC 

Sampling point 
  

Na+ K+ Mg2+ Cl-  SO4
2- Ca+ Li+ B Sr IR error 

g/kg g/kg g/kg g/kg g/kg g/kg mg/kg mg/kg mg/kg wt% % 

SLT-01-COL 333 3.03 2.44 570 6.50 1.25 82.1 56.9 19.2 0.17 8.2 

SLT-01-COL* 326 16.0 12.4 555 18.2 1.84 547 327 39.4 0.35 6.7 

SLT-02-LLI 364 2.50 2.08 577 5.85 1.26 73.2 29.2 17.6 0.30 4.4 

SLT-02-LLI* 317 18.2 14.8 556 21.4 1.88 709 275 45.1 0.32 6.5 

SLT-03-INC 364 6.38 3.07 580 5.25 0.97 142 94.3 16.1 0.22 3.7 

SLT-03-INC* 298 30.1 17.4 530 25.3 1.27 651 640 28.4 0.76 8.5 

SLT-05-TAH 370 3.28 2.72 581 6.27 1.94 99.0 48.4 19.5 0.23 3.2 

SLT-05-TAH* 308 15.7 10.2 558 14.6 1.70 560 234 39.2 0.41 8.2 

SLT-06-NOR 374 3.36 1.38 581 2.73 0.82 62.1 23.0 7.28 0.29 3.5 

SLT-06-NOR* 308 28.2 16.0 536 23.7 1.75 647 320 46.6 1.07 7.2 

SLT-07-SAL 362 4.28 2.62 579 6.11 1.60 100 57.6 25.4 0.27 4.1 

SLT-07-SAL* 321 20.1 13.6 538 21.7 1.85 569 313 39.7 0.69 7.5 

SLT-08-CEN 360 7.91 4.09 573 8.30 1.56 144 109 28.9 0.32 4.2 

SLT-08-CEN* 315 24.6 14.1 541 21.0 1.35 607 426 32.1 0.57 7.5 

SLT-10-PES 371 3.97 2.75 576 5.91 1.73 110 52.0 24.1 0.31 3.5 

SLT-10-PES* 327 17.3 12.0 552 17.4 1.76 577 273 43.2 0.32 6.7 

SLT-13-COR 372 3.44 2.25 578 6.33 1.91 96.1 41.7 15.9 0.28 3.3 

SLT-13-COR* 318 22.8 15.1 540 21.5 1.77 707 390 38.0 0.52 7.3 

SLT-NOR-T3 369 7.48 4.66 578 6.61 0.72 161 61.2 32.6 0.32 3.1 

SLT-NOR-T3* 363 4.31 4.71 574 7.33 1.27 196 69.6 44.9 0.32 4.2 

SLT-NOR-T5 367 3.15 2.45 583 3.01 0.22 117 51.9 6.12 0.15 3.9 

SLT-RÍO-01 341 23.1 8.17 565 13.5 1.00 296 315 77.5 0.15 4.4 

COI-WES-A2 356 7.44 6.85 573 10.2 0.78 137 528 31.0 0.14 4.3 

SLT-NOR-T2 379 0.96 0.62 590 2.88 1.25 31.3 1.2 19.1 0.28 2.3 

SLT-NOR-T4 374 1.82 1.87 576 7.39 2.36 81.9 16.6 24.7 0.98 2.7 

SLT-NOR-T7 374 3.17 2.80 579 7.25 1.59 115 28.9 26.3 0.31 2.9 

SLT-NOR-T7* 343 15.6 9.71 555 15.8 1.72 436 110 68.6 0.87 5.0 

SLT-NOR-T8 369 3.88 3.72 573 8.38 2.34 152 42.4 40.4 0.39 3.6 

SLT-NOR-T11 377 1.55 1.28 576 8.23 3.20 66.5 8.93 29.0 0.51 2.8 

SLT-NOR-T11* 354 5.65 3.86 566 9.01 2.14 177 29.2 46.3 2.31 3.6 

SLT-NOR-T2W 379 1.60 1.34 583 5.11 1.64 61.0 12.9 18.5 0.40 2.3 

SLT-NOR-T3W 374 2.82 3.06 575 9.27 2.49 129 36.9 23.5 0.22 3.0 

SLT-NOR-T5W 381 2.97 2.25 581 3.03 0.44 106 42.4 10.5 0.19 2.7 

SLT-NOR-T6W 381 2.40 2.04 591 2.88 0.32 106 34.5 7.78 0.13 1.9 

SLT-NOR-T10 373 3.72 3.38 577 7.30 1.34 144 54.6 27.2 0.22 3.2 

SLT-NOR-T10* 361 7.24 4.88 567 8.36 1.26 198 86.2 62.2 1.46 3.5 
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Table A - 12: Mineralogical composition of evaporates from the upper cm of the salt crust, samples 
 with * are from salt efflorescences; values in wt% 

Sampling point Halite Carnallite Sylvite Polyhalite Gypsum Kieserite Sum [%] 

SLT-01-COL 84.6 2.79 9.65 0 0.53 0.51 98.0 

SLT-01-COL* 82.8 14.2 0 0 0.79 1.99 99.8 

SLT-02-LLI 92.6 2.38 1.27 0 0.54 0.41 97.2 

SLT-02-LLI* 80.5 17.0 0.57 0 0.81 2.44 101.3 

SLT-03-INC 92.6 3.51 1.00 0 0.42 0.42 97.9 

SLT-03-INC* 75.9 19.9 0 1.60 0 3.28 100.7 

SLT-05-TAH 94.0 3.11 0 0 0.83 0.23 98.2 

SLT-05-TAH* 78.4 11.6 7.96 0 0.73 1.51 100.2 

SLT-06-NOR 95.2 1.58 0 0.88 0 0.19 97.8 

SLT-06-NOR* 78.2 18.2 0 1.97 0 2.97 101.4 

SLT-07-SAL 91.9 2.99 2.18 0 0.69 0.33 98.1 

SLT-07-SAL* 81.7 15.6 0 0 0.79 2.49 100.6 

SLT-08-CEN 91.5 4.68 0 1.02 0 0.96 98.1 

SLT-08-CEN* 80.0 16.1 0 1.53 0 2.68 100.3 

SLT-10-PES 94.3 3.14 0 0 0.74 0.26 98.5 

SLT-10-PES* 83.1 13.7 0 0 0.75 1.89 99.5 

SLT-13-COR 94.7 2.57 0 0 0.82 0.25 98.3 

SLT-13-COR* 80.8 17.3 0 0 0.76 2.48 101.4 

SLT-NOR-T3 93.7 5.33 0 0 0.31 0.70 100.1 

SLT-NOR-T3* 92.4 5.39 0 0 0.54 0.62 98.9 

SLT-NOR-T5 93.4 2.80 1.30 0 0.10 0.36 97.9 

SLT-RÍO-01 86.6 9.34 0.91 4.01 0 1.03 101.9 

COI-WES-A2 90.6 7.84 0 0 0.33 1.21 100.0 

SLT-NOR-T2 96.4 0.71 0.47 0 0.54 0 98.1 

SLT-NOR-T4 95.0 2.14 0 0 1.02 0.25 98.4 

SLT-NOR-T7 95.1 3.21 0 0 0.68 0.50 99.5 

SLT-NOR-T7* 87.1 11.1 0 0.0028 0.65 1.76 100.6 

SLT-NOR-T8 93.7 4.25 0 0 1.00 0.40 99.4 

SLT-NOR-T11 95.9 1.46 0 0 1.37 0.08 98.8 

SLT-NOR-T11* 90.0 4.41 0.73 0 0.92 0.56 96.6 

SLT-NOR-T2W 96.5 1.53 0 0 0.70 0.17 98.9 

SLT-NOR-T3W 95.2 3.50 0 0 1.07 0.47 100.2 

SLT-NOR-T5W 96.9 2.57 0 0 0.19 0.28 99.9 

SLT-NOR-T6W 96.9 2.33 0 0 0.14 0.30 99.6 

SLT-NOR-T10 94.9 3.86 0 0 0.57 0.59 99.9 

SLT-NOR-T10* 91.9 5.58 0 0 0.54 0.77 98.8 
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Table A - 13: Measured electric conductivity and density, and calculated TDS values of three brine 
 samples, underlined values are above the instruments’ treshold 

 
SLT-08-CEN-A-0511 SLT-09-RÍO-A-1110 SLT-01-COL-B-0909 

Brine/ EC ρ TDS EC ρ TDS EC ρ TDS 
DI  mS/cm g/cm³ g/L mS/cm g/cm³ g/L mS/cm g/cm³ g/L 

10/0 240 1.216 340 215 1.229 295 250 1.205 307 

9/1 232 1.196 306 211 1.205 266 239 1.184 277 

8/2 226 1.170 272 208 1.184 236 232 1.165 246 

7/3 216 1.153 238 200 1.161 207 219 1.145 215 

6/4 201 1.132 204 189 1.140 177 202 1.125 184 

5/5 180 1.110 170 174 1.118 148 184 1.105 154 

4/6 155 1.088 136 151 1.095 118 157 1.085 123 

3/7 127 1.067 102 124 1.071 88.5 127 1.064 92.2 

2/8 91.4 1.044 68 90.1 1.047 59 92.4 1.043 61.5 

1/9 50.9 1.021 34 51.9 1.023 29.5 51.5 1.020 30.7 
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Table A - 14: Explanation of geological units occurring in the geological map of the Altiplano 
 (modified after Marsh et al. 1995) 

Definition Description 

Surficial deposits, 

undifferentiated (Holocene 

and Pleistocene) 

Includes unconsolidated alluvial, eolian, colluvial, and glacial 

deposits. Locally may include lacustrine and salt deposits that are 

not shown separately 

Stratovolcano deposits 

(Holocene to Miocene) 

Lava flows, flow breccias, lahars, and minor pyroclastic deposits 

chiefly of andesitic to dacitic composition. May include domes and 

shallow intrusive bodies mostly in vent complexes 

Lacustrine deposits (Holocene 

and Pleistocene) 

Chiefly calcareous tufa in ancient lake shorelines and lacustrine 

mud and silt deposits. Includes deposits mapped as Minchin 

Limestone 

Salt deposits (Holocene and 

Pleistocene) 

Playa-lake evaporites. May include interbedded fine-grained 

lacustrine deposits. Locally may be seasonally covered with water 

Ignimbrite (Pleistocene to 

Miocene) 

Welded and nonwelded ash-flow tuffs, chiefly in extensive outflow 

sheets. Mostly of dacitic composition. Sources probably large 

caldera complexes, only a few of which are identified. Locally, may 

include basinal lacustrine sediments. Includes deposits mapped as 

Ignimbrite Formation and Perez Tuff 

Sedimentary rocks 

(Pleistocene and Pliocene) 

Nonmarine sandstone, conglomerate, and shale. May include minor 

interlayered volcanic rocks  

Intrusive rocks (Pliocene to 

Oligocene) 

Chiefly subvolcanic stocks, plugs, and dikes of dacitic composition 

in vent complex of eroded volcanic eruptive centers. Not all intrusive 

rocks mapped; many are included in unit of undifferentiated volcanic 

rocks. Important host rock for Bolivian polymetallic vein deposits 

Volcanic rocks, 

undifferentiated (Miocene and 

Oligocene) 

Chiefly lava flows, but includes extensive pyroclastic deposits and 

intrusive rocks, and locally may include interbedded nonmarine 

sedimentary rocks. Mostly of andesitic and dacitic composition. 

Sources are poorly defined volcanic eruptive centers, now deeply 

eroded 

Pyroclastic rocks (Miocene 

and Oligocene) 

Chiefly welded to nonwelded ash-flow tuffs, but includes air-fall tuffs 

and thin, volcaniclastic beds. Mostly dacitic in composition. Source 

same as undifferentiated volcanic rocks, but generally occur more 

distant from eruptive center  

Sedimentary rocks (Pliocene 

to Oligocene) 

Nonmarine sandstone, conglomerate, shale, marl, and evaporites  

Sedimentary rocks (Oligocene 

to Paleocene) 

Nonmarine, mostly reddish colored conglomerate, sandstone, 

shale, and mudstone. Primary host for sedimentary-hosted copper 

deposits  

Los Frailes and Morococala 

Ignimbrites (Miocene) 

Ash-flow tuffs of dacitic composition in extensive ignimbrite field 

exposed primarily east of map area 

Sedimentary rocks 

(Cretaceous) 

Marine and nonmarine sandstone, shale, marl, and limestone  

Sedimentary rocks (Paleozoic) Chiefly marine sandstone and shale of Devonian to Ordovician age. 

Rocks are generally highly folded and locally penetratively 

deformed  

Gypsum diapirs (Miocene to 

Eocene) 

May include halite and other evaporite minerals  
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Table A - 15: Coordinates of rock and sediment samples analyzed for chemical composition 

Sample ID  Coordinates (UTM, WGS 84) 
 Longitude Latitude 

Lacustrine sediments   

COI-SED-A2 615314 7845211 

SLT-SED-RÍO-01 -1 675616 7720922 

SLT-SED-RÍO-01-2 675616 7720922 

SLT-SED-OJOS 709130 7752722 

SLT-SED-NOR-T3-1 651999 7818299 

SLT-SED-NOR-T3-2 651999 7818299 

River sediments   

SED-RÍO-GRA-1 704490 7681574 

SED-RÍO-GRA-2 704490 7681574 

SED-RÍO-COL-1 724248 7719257 

SED-RÍO-COL-2 724248 7719257 

Soils from catchment   

IRU-BOD-01 546119 7706969 

IRU-BOD-02 546128 7706939 

IRU-BOD-03 549543 7704771 

OLC-BOD-01 557995 7692599 

UTU-BOD-01 679451 7541735 

UTU-BOD-02 686435 7537282 

UTU-BOD-03 672615 7544216 

Rocks   

UTU-ROC-01 679451 7541735 

UTU-ROC-02 686435 7537282 

UTU-ROC-03 685812 7537393 

OLC-ROC-01 557995 7692599 

OLC-ROC-02 553826 7686293 

IRU-ROC-01 546105 7707156 

IRU-ROC-02 546186 7706967 

IRU-ROC-03 546115 7706860 

IRU-ROC-04 546112 7706791 
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Table A - 16: Chemical analysis of rocks and sediments measured by ICP-MS after HF digestion 
 (DL – detection limit; w – washed; uw – unwashed) 

 Li B Na Mg Al Si P S K Ca Mn Fe Rb Sr Ba 

 ppm ppm ‰ ‰ ‰ ‰ ppm ‰ ‰ ‰ ppm ‰ ppm ppm ppm 

rocks                

IRU-ROC-01 16.6 633 20.8 7.24 60.3 276 1124 <DL 20.6 13.8 356 42.7 81.4 397 665 

IRU-ROC-02 8.97 615 20.9 5.44 59.1 273 1109 <DL 19.9 6.74 383 36.0 75.2 164 393 

IRU-ROC-03 3.83 666 8.21 
0.49

9 
67.5 239 1509 23.1 23.8 1.74 134 90.1 67.1 471 613 

IRU-ROC-04 12.2 842 22.0 8.18 57.7 307 1222 <DL 20.1 15.8 445 37.6 70.1 309 467 

OLC-ROC-01 12.2 832 18.6 8.79 64.0 255 1506 <DL 16.9 31.2 576 50.6 42.1 461 522 

OLC-ROC-02 5.90 878 18.7 4.84 56.1 273 1374 <DL 22.0 11.3 421 42.7 86.7 219 410 

UTU-ROC-01 19.7 219 16.0 6.05 77.6 319 1054 <DL 22.6 14.7 305 30.8 86.2 206 424 

UTU-ROC-02 20.9 395 12.5 10.8 69.8 303 1643 <DL 27.5 22.9 463 39.5 136 302 555 

UTU-ROC-03 14.2 422 8.69 8.41 53.8 276 1494 <DL 26.2 11.8 463 41.7 96.6 171 284 

P-1A 27.5 942 20.6 6.16 73.1 267 1459 <DL 21.0 25.6 522 35.4 101 287 509 

P-1B 25.1 929 23.7 6.60 79.5 291 1479 <DL 21.8 36.0 461 36.6 110 380 962 

R-02 36.6 940 20.1 3.95 60.8 282 1140 <DL 29.0 21.5 374 23.2 175 222 419 

lacustrine sediments 
               

COI-SED-A2_uw 314 2417 89.0 37.3 21.2 85.4 454 32.3 14.1 86.1 336 9.08 53.1 4553 409 

COI-SED-A2_w 184 1991 16.7 42.5 32.6 137 696 25.9 12.8 99.2 487 13.8 71.2 5536 602 

SLT-SED-RÍO-01-
1_uw 

800 3124 53.6 47.0 38.7 153 789 <DL 28.8 3.51 323 28.9 137 267 369 

SLT-SED-RÍO-01-
1_w 

384 2336 7.39 54.4 54.1 215 1079 <DL 22.7 4.74 431 44.1 170 314 469 

SLT-SED-RÍO-01-
2_uw 

412 2026 26.8 14.8 9.7 122 589 57.1 15.9 34.6 186 11.3 59.7 755 61.0 

SLT-SED-RÍO-01-
2_w 

157 1483 5.07 24.1 22.9 76.8 472 67.5 8.64 121 177 14.4 55.9 3653 264 

SLT-SED-SPEC-
OJOS_uw 

301 1777 56.8 7.76 6.41 5.17 1277 <DL 8.01 148 155 27.8 25.3 2814 70 

SLT-SED-SPEC-
OJOS_w 

109 1425 10.5 5.58 7.14 17.8 1863 <DL 4.60 203 192 42.8 25.4 4022 80 

SLT-SED-NOR-T3-
1_uw 

258 676 37.3 7.82 48.8 252 588 <DL 29.6 5.99 458 8.65 95.3 209 966 

SLT-SED-NOR-T3-
1_w 

81.8 840 23.1 6.63 58.9 296 673 <DL 30.5 7.18 560 10.3 112 244 1311 

SLT-SED-NOR-T3-
2_uw 

627 1265 53.2 54.3 44.4 200 929 <DL 20.5 11.1 1170 19.6 125 365 588 

SLT-SED-NOR-T3-
2_w 

488 1030 15.1 63.5 54.0 245 1099 <DL 19.2 9.29 1289 23.7 146 349 653 

River sediments 
               

SLT-SED-GRA-1 56.6 908 15.3 6.96 56.2 278 1147 <DL 15.4 30.0 587 29.1 75.9 472 580 

SLT-SED-GRA-2 135 880 24.0 8.77 59.9 258 1144 <DL 16.9 33.7 653 28.9 85.8 521 798 

SLT-SED-COL-1 209 997 11.5 8.64 33.0 199 1016 <DL 21.0 38.8 443 23.1 67.3 1011 339 

SLT-SED-COL-2 195 682 17.9 18.3 49.5 228 1010 <DL 17.7 76.9 836 24.7 109 853 749 

Soils from 
catchment 

               

IRU-BOD-01 <DL 645 <DL 0.07 0.85 <DL <DL <DL <DL 0.39 4.54 0.13 1.54 5.96 36.8 

IRU-BOD-02 4.71 864 4.05 1.07 30.7 301 799 28.7 11.6 3.27 143 5.02 72.8 120 946 

IRU-BOD-03 10.7 746 20.5 4.25 69.1 255 913 <DL 14.4 16.5 292 31.0 42.0 566 502 

OLC-BOD-01 11.1 810 18.5 4.94 63.6 236 1102 <DL 17.0 24.8 389 32.8 55.3 545 286 

UTU-BOD-01 21.1 518 14.5 5.50 63.2 246 842 <DL 15.6 22.6 408 37.4 58.8 277 215 

UTU-BOD-02 12.8 573 7.60 6.48 53.2 253 1251 <DL 23.4 8.09 275 30.1 145 277 513 
UTU-BOD-03 27.8 514 18.4 5.93 61.5 246 748 <DL 17.5 13.5 289 23.9 72.1 281 271 

  



 

150 

 

Appendix B: Figures 

Fig. B - 1: Depth profile of drilling sites at the Salar de Uyuni; lower end of each profile 

points to  maximum drilling depth at that site, the particular layer continues 

beyond that depth ............................................................................................ 151 

Fig. B - 2: Schema of the well casing, not to scale (after Schmidt (2010)) ........................ 152 

Fig. B - 3: Flow chart of watershed delineation using DEM data in ArcMap with the 

ArcHydro  extension ......................................................................................... 153 

Fig. B - 4: Classification of volcanic rocks according to their location in the QAPF 

diagram, and  position of rock samples (red dots) from the catchment of the 

Salar de Uyuni (modified  from Streckeisen (1979)) ......................................... 154 

Fig. B - 5: Photo documentation of rock samples (pictures taken by Wolfram Canzler)..... 155 

 



Appendix B 

 

151 

 

 

Fig. B - 1: Depth profile of drilling sites at the Salar de Uyuni; lower end of each profile points to 
 maximum drilling depth at that site, the particular layer continues beyond that depth 
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Fig. B - 2: Schema of the well casing, not to scale (after Schmidt (2010)) 
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Fig. B - 3: Flow chart of watershed delineation using DEM data in ArcMap with the ArcHydro 
 extension 
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Fig. B - 4: Classification of volcanic rocks according to their location in the QAPF diagram, and 
 position of rock samples (red dots) from the catchment of the Salar de Uyuni (modified 
 from Streckeisen (1979)) 
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Fig. B - 5: Photo documentation of rock samples (pictures taken by Wolfram Canzler) 

UTU-ROC-01 (volcano Uturuncu) 

 

UTU-ROC-02 (volcano Uturuncu)  

UTU-ROC-03 (volcano Uturuncu) 

  

OLC-ROC-01 (volcano Olca)   

 

OLC-ROC-02 (volcano Olca)  

IRU-ROC-01 (volcano Iruputuncu)  
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IRU-ROC-02 (volcano Iruputuncu)   

IRU-ROC-03 (volcano Iruputuncu)  

IRU-ROC-04 (volcano Iruputuncu)   

P-1A   

P-1B  
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