Amtliche Bekanntmachungen der TU Bergakademie Freiberg

Nr. 16, Heft 2 vom 25. Juni 2015

Modulhandbuch

für den

Diplomstudiengang

Chemie

Inhaltsverzeichnis

Abkürzungen	4
Allgemeine, Anorganische und Organische Chemie für Chemiker	5
Analytische Chemie – Grundlagen	6
Anorganische Chemie der Hauptgruppenelemente	7
Anorganische Chemie der Nebengruppenelemente	8
Bio-, Umwelt- und Werkstoffanalytik	10
Biophysikalische Chemie	11
Biotechnologische Produktionsprozesse	13
Chemie der Salzschmelzen und Ionenflüssigkeiten	14
Chemische Reaktionstechnik	15
Chemische Thermodynamik und Kinetik	16
Chemometrie	17
Diplomarbeit Chemie mit Kolloquium	19
Einführung in die Fachsprache Englisch für Naturwissenschaften (Chemie)	20
Einführung in die Festkörper- und Werkstoffchemie	21
Energiewandlung und Speicherung	23
Enzyme: Reinigung, Charakterisierung, Mechanismen	24
Experimentelle Physikalische Chemie	25
Fortgeschrittene Analytische Chemie	27
Fortgeschrittene Anorganische Chemie	29
Fortgeschrittene Organische Chemie	31
Fortgeschrittene Physikalische Chemie	33
Fortgeschrittene Technische Chemie	35
Grundlagen der Biochemie und Mikrobiologie	37
Grundlagen der Technischen Chemie	39
Halbleiterchemie	40
Höhere Mathematik I für naturwissenschaftliche Studiengänge	41
Höhere Mathematik II für naturwissenschaftliche Studiengänge	42
Industrielle Photovoltaik	43
Instrumentelle Analytische Chemie	44
Mathematische Methoden in der Physikalischen Chemie	45
Mikrobiologisch-biochemisches Praktikum	47
Mineralchemie und Biomineralisation	48
Moderne Aspekte der Theoretischen Physikalischen Chemie	49
Moderne Reagenzien und Methoden der organischen Synthese	50
Modultechnik	51
Molekülmodellierung und Quantenchemie	52
Organische Chemie spezieller Stoffklassen	53
Organische Halbleiter und Metalle	55
Organische Supramolekulare Chemie und Medizinische Chemie	56
Organometallchemie	58
Physik für Naturwissenschaftler I	60
Physik für Naturwissenschaftler II	61
Problemorientierte Projektarbeit Chemie	62
Rheologie und Struktur komplexer Fluide und Gele	63
Siliciumchemie – Von Grundlagen zu industriellen Anwendungen	64
Spezielle Reaktionen und Mechanismen der Organischen Chemie	65
Spezielle Stoffsynthesen der Organischen Chemie	67
Stöchiometrisches Rechnen und qualitative anorganische Stoffanalyse	68
Stressphysiologie und Ökotoxikologie	69
Studienarbeit Chemie mit Kolloquium	70
Technische Katalyse	71
Theoretische Physikalische Chemie	72

Toxikologie, Rechtskunde für Chemiker und naturwissenschaftliche	74
Informationsmedien	
Umwelt- und Rohstoffchemie	76
Umweltverhalten organischer Schadstoffe	77

Abkürzungen

KA: schriftliche Klausur / written exam

MP: mündliche Prüfung / oral examination

AP: alternative Prüfungsleistung / alternative examination

PVL: Prüfungsvorleistung / prerequisite

MP/KA: mündliche oder schriftliche Prüfungsleistung (abhängig von Teilnehmerzahl) / written or

oral examination (dependent on number of students)

SS, SoSe: Sommersemester / sommer semester WS, WiSe: Wintersemester / winter semester

SX: Lehrveranstaltung in Semester X des Moduls / lecture in module semester x

SWS: Semesterwochenstunden

(englisch):Common Inorganic and Organic Chemistry for ChemistsVerantwortlich(e):Voigt, Wolfgang / Prof. Dr.Dozent(en):Voigt, Wolfgang / Prof. Dr.Mazik, Monika / Prof. Dr.Institut(e):Institut für Anorganische ChemieDauer:1 SemesterQualifikationsziele /Die Studierenden sollen in der Lage sein, einfache chemischeKompetenzen:Sachverhalte aus der Fachliteratur zu verstehen. Sie sollen einenÜberblick über chemische Eigenschaften anorganischer und organischerStoffe erlangen.Inhalte:• Grundlegende Konzepte der allgemeinen Chemie: ChemischeBindung, Säure-Base-, Redoxreaktionen, elektrochemische Kette	Daten:	AAOCC. BA. Nr. 3383 Stand: 30.06.2012 7 Start: WiSe 2012		
Verantwortlich(e): Dozent(en): Voigt, Wolfgang / Prof. Dr. Mazik, Monika / Prof. Dr. Institut(e): Institut für Anorganische Chemie Institut für Organische Chemie Institut für Organische Chemie Qualifikationsziele / Kompetenzen: Die Studierenden sollen in der Lage sein, einfache chemische Sachverhalte aus der Fachliteratur zu verstehen. Sie sollen einen Überblick über chemische Eigenschaften anorganischer und organischer Stoffe erlangen. Inhalte: • Grundlegende Konzepte der allgemeinen Chemie: Chemische Bindung, Säure-Base-, Redoxreaktionen, elektrochemische Kette	Modulname:	Allgemeine, Anorganische und Organische Chemie für Chemiker		
Dozent(en): Voigt, Wolfgang / Prof. Dr. Mazik, Monika / Prof. Dr. Institut(e): Institut für Anorganische Chemie Institut für Organische Chemie Dauer: Qualifikationsziele / Kompetenzen: Die Studierenden sollen in der Lage sein, einfache chemische Sachverhalte aus der Fachliteratur zu verstehen. Sie sollen einen Überblick über chemische Eigenschaften anorganischer und organischer Stoffe erlangen. Inhalte: • Grundlegende Konzepte der allgemeinen Chemie: Chemische Bindung, Säure-Base-, Redoxreaktionen, elektrochemische Kette		Common Inorganic and Organic Chemistry for Chemists		
Institut(e): Institut für Anorganische Chemie Institut für Organische Chemie Dauer: Qualifikationsziele / Kompetenzen: Die Studierenden sollen in der Lage sein, einfache chemische Sachverhalte aus der Fachliteratur zu verstehen. Sie sollen einen Überblick über chemische Eigenschaften anorganischer und organischer Stoffe erlangen. Inhalte: • Grundlegende Konzepte der allgemeinen Chemie: Chemische Bindung, Säure-Base-, Redoxreaktionen, elektrochemische Kette				
Institut(e): Institut für Anorganische Chemie Institut für Organische Chemie Dauer: 1 Semester Qualifikationsziele / Kompetenzen: Sachverhalte aus der Fachliteratur zu verstehen. Sie sollen einen Überblick über chemische Eigenschaften anorganischer und organischer Stoffe erlangen. Inhalte: • Grundlegende Konzepte der allgemeinen Chemie: Chemische Bindung, Säure-Base-, Redoxreaktionen, elektrochemische Kette	Dozent(en):			
Dauer: Qualifikationsziele / Kompetenzen: Die Studierenden sollen in der Lage sein, einfache chemische Sachverhalte aus der Fachliteratur zu verstehen. Sie sollen einen Überblick über chemische Eigenschaften anorganischer und organischer Stoffe erlangen. Inhalte: • Grundlegende Konzepte der allgemeinen Chemie: Chemische Bindung, Säure-Base-, Redoxreaktionen, elektrochemische Kette		<u>Mazik, Monika / Prof. Dr.</u>		
Dauer: Qualifikationsziele / Kompetenzen: Die Studierenden sollen in der Lage sein, einfache chemische Sachverhalte aus der Fachliteratur zu verstehen. Sie sollen einen Überblick über chemische Eigenschaften anorganischer und organischer Stoffe erlangen. Inhalte: • Grundlegende Konzepte der allgemeinen Chemie: Chemische Bindung, Säure-Base-, Redoxreaktionen, elektrochemische Kette	Institut(e):			
Qualifikationsziele / Kompetenzen: Die Studierenden sollen in der Lage sein, einfache chemische Sachverhalte aus der Fachliteratur zu verstehen. Sie sollen einen Überblick über chemische Eigenschaften anorganischer und organischer Stoffe erlangen. Inhalte: • Grundlegende Konzepte der allgemeinen Chemie: Chemische Bindung, Säure-Base-, Redoxreaktionen, elektrochemische Kette		Institut für Organische Chemie		
Kompetenzen: Sachverhalte aus der Fachliteratur zu verstehen. Sie sollen einen Überblick über chemische Eigenschaften anorganischer und organischer Stoffe erlangen. Inhalte: • Grundlegende Konzepte der allgemeinen Chemie: Chemische Bindung, Säure-Base-, Redoxreaktionen, elektrochemische Kette	Dauer:			
Überblick über chemische Eigenschaften anorganischer und organischer Stoffe erlangen. Inhalte: • Grundlegende Konzepte der allgemeinen Chemie: Chemische Bindung, Säure-Base-, Redoxreaktionen, elektrochemische Kette	_			
Stoffe erlangen. Inhalte: • Grundlegende Konzepte der allgemeinen Chemie: Chemische Bindung, Säure-Base-, Redoxreaktionen, elektrochemische Kette	Kompetenzen:	l		
Inhalte: • Grundlegende Konzepte der allgemeinen Chemie: Chemische Bindung, Säure-Base-, Redoxreaktionen, elektrochemische Kette				
Bindung, Säure-Base-, Redoxreaktionen, elektrochemische Kette				
	Inhalte:			
chemisches Gleichgewicht Phasenragel Stofftrennung Katalyse		Bindung, Säure-Base-, Redoxreaktionen, elektrochemische Kette,		
chemisches dielchgewicht, Fhasenreger, Stofftreimung, Kataryse		chemisches Gleichgewicht, Phasenregel, Stofftrennung, Katalyse,		
Reaktionsgeschwindigkeit		Reaktionsgeschwindigkeit		
 Struktur-Eigenschafts-Beziehungen anorganischer Stoffe in der 		1		
Systematik des Periodensystems der chemischen Elemente und		Systematik des Periodensystems der chemischen Elemente und		
der Stoffgruppen		der Stoffgruppen		
Einführung in die organische Chemie:		Einführung in die organische Chemie:		
 Elektronenkonfiguration, räumlicher Aufbau und 		 Elektronenkonfiguration, räumlicher Aufbau und 		
Bindungsverhältnisse von Kohlenstoffverbindungen		Bindungsverhältnisse von Kohlenstoffverbindungen		
 Wichtige Stoffklassen (Aliphaten, Aromaten, 				
Halogenalkane, Alkohole, Phenole, Amine,				
Carbonylverbindungen und Derivate, ausgewählte				
Naturstoffe)		· 1		
 Darstellung und Reaktionen ausgewählter 		 Darstellung und Reaktionen ausgewählter 		
Verbindungsbeispiele		Verbindungsbeispiele		
 Grundlegende Reaktionsmechanismen 				
Typische Fachliteratur: E. Riedel: Allgemeine und Anorganische Chemie, VCH; Ch. E. Mortimer:	Typische Fachliteratur:	E. Riedel: Allgemeine und Anorganische Chemie, VCH; Ch. E. Mortimer:		
Chemie – Basiswissen, VCH; H. R. Christen: Grundlagen der Allgemeinen		Chemie – Basiswissen, VCH; H. R. Christen: Grundlagen der Allgemeinen		
und Anorganischen Chemie, Sauerländer-Salle; H. Kaufmann, A.		und Anorganischen Chemie, Sauerländer-Salle; H. Kaufmann, A.		
Hädener: Grundlagen der Organischen Chemie, Birkhäuser; A. Wollrab:		Hädener: Grundlagen der Organischen Chemie, Birkhäuser; A. Wollrab:		
Organische Chemie, Vieweg		Organische Chemie, Vieweg		
Lehrformen: S1 (WS): Vorlesung (4 SWS)	Lehrformen:	S1 (WS): Vorlesung (4 SWS)		
S1 (WS): Übung (1 SWS)		S1 (WS): Übung (1 SWS)		
	Voraussetzungen für	Empfohlen:		
	die Teilnahme:			
Chemie Sekundarstufe II; Vorkurs "Chemie" an der TU BAF				
	Turnus:	· ·		
	Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen		
	die Vergabe von			
Leistungspunkten: KA [120 min]	Leistungspunkten:	KA [120 min]		
	Leistungspunkte:	7		
Note: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)	Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)		
Prüfungsleistung(en):				
KA [w: 1]				
<u> </u>	Arbeitsaufwand:	-		
Präsenzzeit und 135h Selbststudium. Letzteres umfasst die Vor- und		Präsenzzeit und 135h Selbststudium. Letzteres umfasst die Vor- und		
Nachbereitung der Lehrveranstaltungen sowie die Vorbereitung auf die		Nachbereitung der Lehrveranstaltungen sowie die Vorbereitung auf die		
Klausurarbeit.		Klausurarbeit.		

Daten:	ALCH1 .BA.Nr.005 Stand: 27.06.2012 Start: SoSe 2013		
Modulname:	Analytische Chemie - Grundlagen		
(englisch):	Analytical Chemistry - Fundamentals		
Verantwortlich(e):	Otto, Matthias / Prof. Dr.		
Dozent(en):	Otto, Matthias / Prof. Dr.		
Institut(e):	Institut für Analytische Chemie		
Dauer:	1 Semester		
Qualifikationsziele /	Die Studierenden sollen die Grundlagen zur Anwendung von		
Kompetenzen:	Gleichgewichtsreaktionen für die nasschemische Analytik verstanden		
itompetenzem	und beispielhaft praktisch im Labor erprobt haben.		
Inhalte:	Analysenmethoden auf der Grundlage chemischer Reaktionen		
	(Massenwirkungsgesetz, starke und schwache Elektrolyte, Säure-Base-		
	Gleichgewichte, Fällungsgleichgewichte,		
	Komplexbildungsgleichgewichte, Austausch- und		
	Verteilungsgleichgewichte, Redoxgleichgewichte), Titrationen,		
	Gravimetrie, Potentiometrie, Aufschlüsse, Extraktion, Ionenaustausch.		
Typische Fachliteratur:	M. Otto: Analytische Chemie, Wiley-VCH; R. Kellner, JM. Mermet, M.		
l ypische i achilteratur.			
Lehrformen:	Otto, M. Valcárcel, M. Widmer: Analytical Chemistry, Wiley-VCH. S1 (SS): Vorlesung (2 SWS)		
Lennormen:			
	S1 (SS): Ggf. kann die Übung auch im Wintersemester angeboten		
	werden. / Übung (1 SWS)		
	S1 (SS): Ggf. kann das Praktikum auch im Wintersemester angeboten		
	werden. / Praktikum (2 SWS)		
Voraussetzungen für	Empfohlen:		
die Teilnahme:	Kenntnisse, die im Modul Allgemeine, Anorganische und Organische		
	Chemie vermittelt werden.		
Turnus:	jährlich im Sommersemester		
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen		
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:		
Leistungspunkten:	KA* [90 min]		
	AP*: Praktikum		
	PVL: Seminarvortrag und Kurzprüfungen		
	PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden.		
	* Bei Modulen mit mehreren Prüfungsleistungen muss diese		
	Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0)		
	bewertet sein.		
Leistungspunkte:	6		
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)		
	Prüfungsleistung(en):		
	KA* [w: 2]		
	AP*: Praktikum [w: 3]		
	* Bei Modulen mit mehreren Prüfungsleistungen muss diese		
	Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0)		
A shoite out two sale	bewertet sein.		
Arbeitsaufwand:	Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 75h		
	Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und		
	Nachbereitung der Lehrveranstaltungen sowie die Vorbereitung auf die		
	Klausurarbeit.		

lenglisch): Inorganic Chemistry of the Main Group Elements Verantwortlich(e): Kroke, Edwin / Prof. Dr. Nozent(en): Kroke, Edwin / Prof. Dr. Nozent(en): Noze, Edwin / Prof. Dr. Nozent(en): Noze, Edwin / Prof. Dr. Nozen: 1 Semester Qualifikationsziele / Die Studierenden sollen einen Überblick über die Stoffchemie der Hauptgruppenelemente erhalten und die Grundlagen des Atom- und Molekülbaus sowie der wichtigsten Reaktionstypen der Anorganischen Chemie werstanden haben. Norkommen, Darstellung, Eigenschaften und Anwendungen der folgenden Hauptgruppenelemente und ihrer wichtigsten Verbindungen: Halogene, Alkalimetalle, Chalkogene, Erdalkalimetalle, Pentele, Triele, Tetrele und Edelgase. Aufschlüsse und Sulfid-Trennungsgang. Typische Fachliteratur: Jandersche Chemie, Hirzel; Holleman/Wiberg; Lehrbuch der Anorganischen Chemie, Hirzel; Holleman/Wiberg; Lehrbuch der Anorganischen Chemie, de Gruyter; D. F. Shriver, P. W. Atkins, C. H. Langford: Anorganische Chemie, Wiley-VCH; E. Riedel: Anorganische Chemie, de Gruyter. Soffensetzungen für Erichten der Gruyter. Joraussetzungen für Birteit Hollen der Gerüpter Greichten der Gruyter. Joraussetzungen für Greichten der Gerüpter Greichten der Gruyter Greichten Gr	Daten:	ANCH2. BA. Nr. 143 Stand: 26.01.2015 📜 Start: SoSe 2013		
Verantwortlich(e): Kroke, Edwin / Prof. Dr. Dozent(en): Kroke, Edwin / Prof. Dr. Institut(e): Institut für Anorganische Chemie Dauer: 1 Semester Dauerin de Stoffchemie der Hauptgruppenelmente erhalten und die Grundlagen des Atom- und Molekülbaus sowie der wichtigsten Reaktionstypen der Anorganischen Chemie verstanden haben. Norkommen, Darstellung, Eigenschaften und Anwendungen der folgenden Hauptgruppenelemente und ihrer wichtigsten Verbindungen: Halogene, Alkalimetalle, Chalkogene, Erdalkalimetalle, Pentele, Triele, Tetrele und Edelgase. Aufschlüsse und Sulfid-Trennungsgang. Ippische Fachliteratur: Jander/Blasius: Lehrbuch der analytischen und präparativen anorganischen Chemie, Hirzel; Holleman/Wiberg: Lehrbuch der Anorganischen Chemie, de Gruyter; D. F. Shriver, P. W. Atkins, C. H. Langford: Anorganische Chemie, Wiley-VCH; E. Riedel: Anorganische Chemie, de Gruyter; D. F. Shriver, P. W. Atkins, C. H. Langford: Anorganische Chemie, Wiley-VCH; E. Riedel: Anorganische Chemie, de Gruyter; D. F. Shriver, P. W. Atkins, C. H. Langford: Anorganische Chemie, Wiley-VCH; E. Riedel: Anorganische Chemie, de Gruyter; D. F. Shriver, P. W. Atkins, C. H. Langford: Anorganische und Organische Chemie, 2009-09-02 Iturnus: Allgemeine, Anorganische und Organische Chemie, 2009-09-09 Ippitungsvariante 1: MP: Die Modulprüfung ist Bestandteil der Komp	Modulname:	Anorganische Chemie der Hauptgruppenelemente		
Dozent(en): Kroke, Edwin / Prof. Dr. Institut für Anorganische Chemie	(englisch):			
Institut(e): Dauer: 1 Semester Dauer: Die Studierenden sollen einen Überblick über die Stoffchemie der Hauptgruppenelemente erhalten und die Grundlagen des Atom- und Molekülbaus sowie der wichtigsten Reaktionstypen der Anorganischen Chemie verstanden haben. Norkommen, Darstellung, Eigenschaften und Anwendungen der folgenden Hauptgruppenelemente und ihrer wichtigsten Verbindungen: Halogene, Alkalimetalle, Chalkogene, Erdalkalimetalle, Pentele, Triele, Tetrele und Edelgase. Aufschlüsse und Sulfid-Trennungsgang. Jander/Blasius: Lehrbuch der analytischen und präparativen anorganischen Chemie, Hirzel; Holleman/Wiberg: Lehrbuch der Anorganischen Chemie, de Gruyter; D. F. Shriver, P. W. Atkins, C. H. Langford: Anorganische Chemie, Wiley-VCH; E. Riedel: Anorganische Chemie, de Gruyter. Joraussetzungen für Si (SS): Vorlesung (3 SWS) S1 (SS): Praktikum (4 SWS) Empfohlen: Jieruns: Joraussetzungen für Jierungen für Jierungen für Jierungsvariante 1: Mpr. Die Modulprüfung umfasst: In Prüfungsvariante 1: Mpr. Die Modulprüfung umfasst: In Prüfungsvariante 1: Mpr. Die Modulprüfung umfasst: In Prüfungsvariante 2: KA [90 min] PVL: Praktikum (Antestate, Protokolle) PVL: Schriftliches Abtestat [60 min] PVL: Praktikum (Antestate, Protokolle) Prüfungsvariante 2: Für Studierende des Diplomstudienganges Chemie. Prüfungsvariante 1: Für Studierende des Diplomstudienganges Chemie. Prüfungsvariante 1: Für Studierende der Gewichtung (w) aus folgenden(r) Prüfungsvariante 1: Mpr. Die Modulprüfung (k) aus folgenden(r) Prüfungsvariante 1: Mpr. Studierende der Gewichtung (w) aus folgenden(r) Prüfungsvariante 1: Mpr. Die Modulprüfung der Komplexprüfung KPAC, [w: 1] Mpr. Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC, [w: 1] Mpr. Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC, [w: 1] Arbeitsaufwand: Der Zeitaufwand beträgt 210h und setzt sich zusammen aus 105h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltung, die Lösungen der	Verantwortlich(e):			
Dauer: Dauer: Die Studierenden sollen einen Überblick über die Stoffchemie der Auptgruppenelemente erhalten und die Grundlagen des Atom- und Molekülbaus sowie der wichtigsten Reaktionstypen der Anorganischen Chemie verstanden haben.	Dozent(en):	Kroke, Edwin / Prof. Dr.		
Qualifikationsziele / Kompetenzen: Die Studierenden sollen einen Überblick über die Stoffchemie der Hauptgruppenelemente erhalten und die Grundlagen des Atom- und Molekülbaus sowie der wichtigsten Reaktionstypen der Anorganischen Chemie verstanden haben. Nhalte: Vorkommen, Darstellung, Eigenschaften und Anwendungen der folgenden Hauptgruppenelemente und ihrer wichtigsten Verbindungen: Halogene, Alkalimetalle, Chalkogene, Erdalkalimetalle, Pentele, Tetrele und Edelgase. Aufschlüsse und Sulfid-Trennungsgang. Typische Fachliteratur: Jander/Blasius: Lehrbuch der analytischen und präparativen anorganischen Chemie, de Gruyter; D. F. Shriver, P. W. Atkins, C. H. Langford: Anorganische Chemie, Wiley-VCH; E. Riedel: Anorganische Chemie, de Gruyter; D. F. Shriver, P. W. Atkins, C. H. Langford: Anorganische Chemie, Wiley-VCH; E. Riedel: Anorganische Chemie, de Gruyter; S1 (S5): Vorlesung (3 SWS) S1 (S5): Vorlesung (3 SWS) S1 (S5): Praktikum (4 SWS) Voraussetzungen für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: In Prüfungsvariante 1: More Die Modulprüfung umfasst: In Prüfungsvariante 1: Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [45 bis 60 min] PVL: Praktikum (Antestate, Protokolle) PVL: Praktikum (Antestate, Protokolle) PVL: Praktikum (Antestate, Protokolle) Prüfungsvariante 1: Für Studierende aller Studiengänge außer dem Diplomstudiengang Chemie. Prüfungsvariante 1: Für Studierende aller Studiengänge außer dem Diplomstudiengang Chemie. Prüfungsvariante 1: Für Studierende aller Studiengänge außer dem Diplomstudiengang Chemie. Prüfungsvariante 1: Für Studierende aller Studiengänge außer dem Diplomstudiengang Chemie. Prüfungsvariante 1: Für Studierende aller Studiengänge außer dem Diplomstudiengang Chemie. Prüfungsvariante 1: MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [w: 1] oder in Prüfungsvariante 1: MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [w: 1] oder in Prüfungsvariante 2: KA [w: 1] Arbeitsaufwand:	Institut(e):	Institut für Anorganische Chemie		
Hauptgruppenelemente erhalten und die Grundlagen des Atom- und Molekülbaus sowie der wichtigsten Reaktionstypen der Anorganischen Chemie verstanden haben. nhalte: Vorkommen, Darstellung, Eigenschaften und Anwendungen der folgenden Hauptgruppenelemente und ihrer wichtigsten Verbindungen: Halogene, Alkalimetalle, Chalkogene, Erdalkalimetalle, Pentele, Triele, Tetrele und Edelgase. Aufschlüsse und Sulfid-Trennungsgang. [Vpische Fachliteratur: andere Anorganischen Chemie, Hirzel; Holleman/Wiberg: Lehrbuch der Anorganischen Chemie, de Gruyter; D. F. Shriver, P. W. Atkins, C. H. Langford: Anorganische Chemie, Wiley-VCH; E. Riedel: Anorganische Chemie, de Gruyter: [Anorganischen Chemie, Ge Gruyter; D. F. Shriver, P. W. Atkins, C. H. Langford: Anorganische Chemie, Wiley-VCH; E. Riedel: Anorganische Chemie, de Gruyter: [Anorganischen Chemie, Ge Gruyter; D. F. Shriver, P. W. Atkins, C. H. Langford: Anorganische Chemie, Wiley-VCH; E. Riedel: Anorganische Chemie, 2009-09-02 Tetre Chemie, 2009-09-09-09 Tetre Chemie, 2009-09-09 Tetre Chemie, 2009-09-09-09 Tetre Chemie, 2009-09-09 Tetre Che	Dauer:	1 Semester		
Molekcübaus sowie der wichtigsten Reaktionstypen der Anorganischen Chemie verstanden haben. Norkommen, Darstellung, Eigenschaften und Anwendungen der folgenden Hauptgruppenelemente und ihrer wichtigsten Verbindungen: Halogene, Alkalimetalle, Chalkogene, Erdalkalimetalle, Pentele, Treile, Tetrele und Edelgase. Aufschlüsse und Sulfid-Trennungsgang. Ispische Fachliteratur: Iander/Blasius: Lehrbuch der analytischen und präparativen anorganischen Chemie, Hirzel; Holleman/Wiberg: Lehrbuch der Anorganischen Chemie, de Gruyter; D. F. Shriver, P. W. Atkins, C. H. Langford: Anorganische Chemie, Wiley-VCH; E. Riedel: Anorganische Chemie, de Gruyter; D. F. Shriver, P. W. Atkins, C. H. Langford: Anorganische Chemie, Wiley-VCH; E. Riedel: Anorganische Under Gempford: Anorganisc	Qualifikationsziele /	Die Studierenden sollen einen Überblick über die Stoffchemie der		
Chemie verstanden haben. Norkommen, Darstellung, Eigenschaften und Anwendungen der folgenden Hauptgruppenelemente und ihrer wichtigsten Verbindungen: Halogene, Alkalimetalle, Chalkogene, Erdalkalimetalle, Pentele, Triele, Tetrele und Edelgase. Aufschlüsse und Sulfid-Trennungsgang. Typische Fachliteratur: lander/Blasius: Lehrbuch der analytischen und präparativen anorganischen Chemie, Hirzel; Holleman/Wiberg: Lehrbuch der Anorganischen Chemie, de Gruyter; D. F. Shriver, P. W. Atkins, C. H. Langford: Anorganische Chemie, Wiley-VCH; E. Riedel: Anorganische Chemie, de Gruyter. S1 (SS): Vorlesung (3 SWS) S1 (SS): Praktikum (4 SWS) Voraussetzungen für die Teilnahme: Allgemeine, Anorganische und Organische Chemie, 2009-09-02 jährlich im Sommersemester Voraussetzungen für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: in Prüfungsvariante 1: MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [45 bis 60 min] PVL: Praktikum (Antestate, Protokolle) PVL: Schriftliches Abtestat [60 min] PVL: Praktikum (Antestate, Protokolle) PVL: Praktikum (Antestate, Protokolle) Prüfungsvariante 1: Für Studierende aller Studiengänge außer dem Diplomstudiengang Chemie. PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden. Zielstungspunkte: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsvariante 1: MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [w: 1] oder in Prüfungsvariante 1: MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [w: 1] oder in Prüfungsvariante 2: KA [w: 1] Arbeitsaufwand: Der Zeitaufwand beträgt 210h und setzt sich zusammen aus 105h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltung, die Lösungen der	Kompetenzen:	Hauptgruppenelemente erhalten und die Grundlagen des Atom- und		
Inhalte: Vorkommen, Darstellung, Eigenschaften und Anwendungen der folgenden Hauptgruppenelmente und ihrer wichtigsten Verbindungen: Halogene, Alkalimetalle, Chalkogene, Erdalkalimetalle, Pentele, Triele, Tetrele und Edelgase. Aufschlüsse und Sulfid-Trennungsgang. Inder/Blasius: Lehrbuch der analytischen und präparativen anorganischen Chemie, Hirzel; Holleman/Wiberg: Lehrbuch der Anorganischen Chemie, de Gruyter; D. F. Shriver, P. W. Atkins, C. H. Langford: Anorganische Chemie, Wiley-VCH; E. Riedel: Anorganische Chemie, de Gruyter: Lehrformen: S1 (SS): Vorlesung (3 SWS) S1 (SS): Praktikum (4 SWS) Voraussetzungen für die Teinhahme: Allgemeine. Anorganische und Organische Chemie, 2009-09-02 Ährlich im Sommersemester Voraussetzungen für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: In Prüfungsvariante 1: MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [45 bis 60 min] PVL: Praktikum (Antestate, Protokolle) PVL: Schriftliches Abtestat [60 min] Oder In Prüfungsvariante 2: KA [90 min] PVL: Praktikum (Antestate, Protokolle) Prüfungsvariante 2:Für Studierende aller Studiengänge außer dem Diplomstudiengang Chemie. Prüfungsvariante 2:Für Studierende aller Studiengänge außer dem Diplomstudiengang Chemie. Prüfungsvarinte 2:Für Studierende aller Studiengänge außer dem Diplomstudiengang Chemie. Prüfungsvarinte 2:Für Studierende der Gewichtung (w) aus folgenden(r) Prüfungsvariante 1: MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [w: 1] oder In Prüfungsvariante 2: KA [w: 1]		Molekülbaus sowie der wichtigsten Reaktionstypen der Anorganischen		
folgenden Hauptgruppenelemente und ihrer wichtigsten Verbindungen: Halogene, Alkalimetalle, Chalkogene, Erdalkalimetalle, Pentele, Triele, Tetrele und Edelgase. Aufschlüsse und Sulfid-Trennungsgang. Jander/Blasius: Lehrbuch der analytischen und präparativen anorganischen Chemie, Hirzel; Holleman/Wilberg: Lehrbuch der Anorganischen Chemie, de Gruyter; D. F. Shriver, P. W. Atkins, C. H. Langford: Anorganische Chemie, Wiley-VCH; E. Riedel: Anorganische Chemie, de Gruyter. S. 1 (SS): Vorlesung (3 SWS) S. 1 (SS): Praktikum (4 SWS) Empfohlen: Gurnus: Joraussetzungen für die Teilnahme: Allgemeine. Anorganische und Organische Chemie, 2009-09-02 Allgemeine. Anorganische und Organische Chemie, 2009-09-02 Allgemeine. Anorganische und Organische Chemie, 2009-09-02 Türus: Joraussetzungen für die Vergabe von Leistungspunkten: Woraussetzungen für der Modulprüfung bie Modulprüfung umfasst: in Prüfungsvariante 1: MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [45 bis 60 min] PVL: Praktikum (Antestate, Protokolle) PVL: Praktikum (Antestate, Protokolle) PVL: Praktikum (Antestate, Protokolle) Prüfungsvariante 2: KA [90 min] PVL: Praktikum (Antestate, Protokolle) Prüfungsvariante 2: Für Studierende aller Studiengänge außer dem Diplomstudiengang Chemie. PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden. 7 Note: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsvariante 1: MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [w: 1] oder in Prüfungsvariante 2: KA [w: 1] Arbeitsaufwand: Der Zeitaufwand beträgt 210h und setzt sich zusammen aus 105h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltung, die Lösungen der		Chemie verstanden haben.		
Halogene, Alkalimetalle, Chalkogene, Erdalkalimetalle, Pentele, Treile, Tetrele und Edelgase. Aufschlüsse und Sulfid-Trennungsgang. Typische Fachliteratur: Jander/Blasius: Lehrbuch der analytischen und präparativen anorganischen Chemie, Hirzel; Holleman/Wiberg: Lehrbuch der Anorganischen Chemie, de Gruyter; D. F. Shriver, P. W. Atkins, C. H. Langford: Anorganische Chemie, Wiley-VCH; E. Riedel: Anorganische Chemie, de Gruyter. St (SS): Vorlesung (3 SWS) St (SS): Praktikum (4 SWS) Empfohlen: Allgemeine. Anorganische und Organische Chemie, 2009-09-02 jährlich im Sommersemester Voraussetzungen für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: in Prüfungsvariante 1: MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [45 bis 60 min] PVL: Praktikum (Antestate, Protokolle) PVL: Schriftliches Abtestat [60 min] oder in Prüfungsvariante 2: KA [90 min] PVL: Praktikum (Antestate, Protokolle) Prüfungsvariante 1: Für Studierende des Diplomstudienganges Chemie. Prüfungsvariante 1: Für Studierende aller Studiengänge außer dem Diplomstudiengang Chemie. Prüfungsvariate 1: Für Studierende aller Studiengänge außer dem Diplomstudiengang Chemie. PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden. Zeistungspunkte: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsvariante 1: MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [w: 1] oder in Prüfungsvariante 2: KA [w: 1] Poer Zeitaufwand beträgt 210h und setzt sich zusammen aus 105h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltung, die Lösungen der	Inhalte:	Vorkommen, Darstellung, Eigenschaften und Anwendungen der		
Halogene, Alkalimetalle, Chalkogene, Erdalkalimetalle, Pentele, Treile, Tetrele und Edelgase. Aufschlüsse und Sulfid-Trennungsgang. Typische Fachliteratur: Jander/Blasius: Lehrbuch der analytischen und präparativen anorganischen Chemie, Hirzel; Holleman/Wiberg: Lehrbuch der Anorganischen Chemie, de Gruyter; D. F. Shriver, P. W. Atkins, C. H. Langford: Anorganische Chemie, Wiley-VCH; E. Riedel: Anorganische Chemie, de Gruyter. St (SS): Vorlesung (3 SWS) St (SS): Praktikum (4 SWS) Empfohlen: Allgemeine. Anorganische und Organische Chemie, 2009-09-02 jährlich im Sommersemester Voraussetzungen für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: in Prüfungsvariante 1: MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [45 bis 60 min] PVL: Praktikum (Antestate, Protokolle) PVL: Schriftliches Abtestat [60 min] oder in Prüfungsvariante 2: KA [90 min] PVL: Praktikum (Antestate, Protokolle) Prüfungsvariante 1: Für Studierende des Diplomstudienganges Chemie. Prüfungsvariante 1: Für Studierende aller Studiengänge außer dem Diplomstudiengang Chemie. Prüfungsvariate 1: Für Studierende aller Studiengänge außer dem Diplomstudiengang Chemie. PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden. Zeistungspunkte: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsvariante 1: MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [w: 1] oder in Prüfungsvariante 2: KA [w: 1] Poer Zeitaufwand beträgt 210h und setzt sich zusammen aus 105h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltung, die Lösungen der		folgenden Hauptgruppenelemente und ihrer wichtigsten Verbindungen:		
Tetrele und Edelgase. Aufschlüsse und Sulfid-Trennungsgang. Ippische Fachliteratur: lander/Blasius: Lehrbuch der analytischen und präparativen anorganischen Chemie, Hirzel; Holleman/Wiberg: Lehrbuch der Anorganischen Chemie, de Gruyter; D. F. Shriver, P. W. Atkins, C. H. Langford: Anorganische Chemie, Wiley-VCH; E. Riedel: Anorganische Chemie, de Gruyter. S1 (S5): Vorlesung (3 SWS) S1 (S5): Praktikum (4 SWS) Impfohlen: Allgemeine, Anorganische und Organische Chemie, 2009-09-02 Idei Teilnahme: Allgemeine, Anorganische und Organische Chemie, 2009-09-02 Idei Vergabe von		1		
In Prüfungsvariante 1: MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [45 bis 60 min] PVL: Praktikum (Antestate, Protokolle) PVL: Wingsvariante 1: Für Studierende des Diplomstudienganges Chemie. Prüfungsvariante 1: Für Studierende aller Studiengänge außer dem Diplomstudiengang Chemie. PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden. PVL: Praktikum (Antestate, Protokolle) PVL: Praktikum (Antestate, Protokolle) PVL: Wingsvariante 1: Für Studierende des Diplomstudienganges Chemie. Prüfungsvariante 1: Für Studierende aller Studiengänge außer dem Diplomstudiengang Chemie. PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden. PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden. Arbeitsaufwand: Der Zeitaufwand beträgt 210h und setzt sich zusammen aus 105h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltung, die Lösungen der				
anorganischen Chemie, Hirzel; Holleman/Wiberg: Lehrbuch der Anorganischen Chemie, de Gruyter; D. F. Shriver, P. W. Atkins, C. H. Langford: Anorganische Chemie, Wiley-VCH; E. Riedel: Anorganische Chemie, de Gruyter. S1 (S5): Vorlesung (3 SWS) S1 (S5): Praktikum (4 SWS) Voraussetzungen für die Teilnahme: Allgemeine. Anorganische und Organische Chemie. 2009-09-02 jährlich im Sommersemester Voraussetzungen für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: in Prüfungsvariante 1: MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [45 bis 60 min] PVL: Praktikum (Antestate, Protokolle) PVL: Schriftliches Abtestat [60 min] Oder in Prüfungsvariante 2: KA [90 min] PVL: Praktikum (Antestate, Protokolle) Prüfungsvariante 1: Für Studierende des Diplomstudienganges Chemie. Prüfungsvariante 1: Für Studierende aller Studiengänge außer dem Diplomstudiengang Chemie. Prüfungsvariante 2:Für Studierende aller Studiengänge außer dem Diplomstudiengang Chemie. PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden. 7 Note: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): in Prüfungsvariante 1: MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [w: 1] oder in Prüfungsvariante 2: KA [w: 1] Der Zeitaufwand beträgt 210h und setzt sich zusammen aus 105h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltung, die Lösungen der	Typische Fachliteratur:	· · · · · · · · · · · · · · · · · · ·		
Anorganischen Chemie, de Gruyter; D. F. Shriver, P. W. Atkins, C. H. Langford: Anorganische Chemie, Wiley-VCH; E. Riedel: Anorganische Chemie, de Gruyter. 51 (SS): Vorlesung (3 SWS) S1 (SS): Praktikum (4 SWS) Furpfohlen: Allgemeine. Anorganische und Organische Chemie. 2009-09-02 jährlich im Sommersemester Voraussetzungen für die Vergabe von Leistungspunkten: MP: Die Modulprüfung. Die Modulprüfung umfasst: In Prüfungsvariante 1: MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [45 bis 60 min] PVL: Praktikum (Antestate, Protokolle) PVL: Schriftliches Abtestat [60 min] oder In Prüfungsvariante 2: KA [90 min] PVL: Praktikum (Antestate, Protokolle) Prüfungsvariante 1: Für Studierende des Diplomstudienganges Chemie. Prüfungsvarinte 2:Für Studierende aller Studiengänge außer dem Diplomstudiengang Chemie. PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden. PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden. 7 Note: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsvariante 1: MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [w: 1] oder In Prüfungsvariante 2: KA [w: 1] Der Zeitaufwand beträgt 210h und setzt sich zusammen aus 105h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltung, die Lösungen der	-			
Langford: Anorganische Chemie, Wiley-VCH; E. Riedel: Anorganische Chemie, de Gruyter. S1 (SS): Vorlesung (3 SWS) S1 (SS): Praktikum (4 SWS) Voraussetzungen für diie Teilnahme: Allgemeine, Anorganische und Organische Chemie, 2009-09-02 jährlich im Sommersemester Voraussetzungen für der Modulprüfung. Die Modulprüfung umfasst: in Prüfungsvariante 1: MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [45 bis 60 min] PVL: Praktikum (Antestate, Protokolle) PVL: Schriftliches Abtestat [60 min] Oder in Prüfungsvariante 2: KA [90 min] PVL: Praktikum (Antestate, Protokolle) Prüfungsvariante 1: Für Studierende des Diplomstudienganges Chemie. Prüfungsvariante 1: Für Studierende aller Studiengänge außer dem Diplomstudiengang Chemie. PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden. Leistungspunkte: 7 Note: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsvariante 1: MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [w: 1] oder in Prüfungsvariante 2: KA [w: 1] Der Zeitaufwand beträgt 210h und setzt sich zusammen aus 105h Präsenszeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltung, die Lösungen der				
Chemie, de Gruyter. S1 (SS): Vorlesung (3 SWS)		,		
Lehrformen: S1 (SS): Vorlesung (3 SWS) S1 (SS): Praktikum (4 SWS) Empfohlen: Allgemeine. Anorganische und Organische Chemie. 2009-09-02 ährlich im Sommersemester Voraussetzungen für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: in Prüfungsvariante 1: MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [45 bis 60 min] PVL: Praktikum (Antestate, Protokolle) PVL: Schriftliches Abtestat [60 min] oder in Prüfungsvariante 2: KA [90 min] PVL: Praktikum (Antestate, Protokolle) Prüfungsvariante 1: Für Studierende des Diplomstudienganges Chemie. Prüfungsvariante 1: Für Studierende aller Studiengänge außer dem Diplomstudiengang Chemie. PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden. eistungspunkte: 7 Note: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): in Prüfungsvariante 1: MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [w: 1] oder in Prüfungsvariante 2: KA [w: 1] Der Zeitaufwand beträgt 210h und setzt sich zusammen aus 105h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltung, die Lösungen der				
S1 (SS): Praktikum (4 SWS) Voraussetzungen für Empfohlen: Allgemeine. Anorganische und Organische Chemie. 2009-09-02 ährlich im Sommersemester Voraussetzungen für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: in Prüfungsvariante 1: MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [45 bis 60 min] PVL: Praktikum (Antestate, Protokolle) PVL: Schriftliches Abtestat [60 min] oder in Prüfungsvariante 2: KA [90 min] PVL: Praktikum (Antestate, Protokolle) Prüfungsvariante 1: Für Studierende des Diplomstudienganges Chemie. Prüfungsvariante 2: Für Studierende aller Studiengänge außer dem Diplomstudiengang Chemie. Prüfungsvariante 2: Für Studierende aller Studiengänge außer dem Diplomstudiengang Chemie. PvL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden. 7 Note: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsvariante 1: MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [w: 1] oder in Prüfungsvariante 2: KA [w: 1] Der Zeitaufwand beträgt 210h und setzt sich zusammen aus 105h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltung, die Lösungen der	Lehrformen:			
### Allgemeine. Anorganische und Organische Chemie. 2009-09-02 Jahrlich im Sommersemester		_		
Allgemeine. Anorganische und Organische Chemie. 2009-09-02 Furnus: jährlich im Sommersemester Voraussetzungen für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: in Prüfungsvariante 1: MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [45 bis 60 min] PVL: Praktikum (Antestate, Protokolle) PVL: Schriftliches Abtestat [60 min] PVL: Praktikum (Antestate, Protokolle) Prüfungsvariante 2: KA [90 min] PVL: Praktikum (Antestate, Protokolle) Prüfungsvariante 1: Für Studierende des Diplomstudienganges Chemie. Prüfungsvariante 1: Für Studierende aller Studiengänge außer dem Diplomstudiengang Chemie. PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden. Polie Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): in Prüfungsvariante 1: MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [w: 1] Oder in Prüfungsvariante 2: KA [w: 1] Der Zeitaufwand beträgt 210h und setzt sich zusammen aus 105h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltung, die Lösungen der	Voraussetzungen für			
Turnus: Voraussetzungen für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: in Prüfungsvariante 1: MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [45 bis 60 min] PVL: Praktikum (Antestate, Protokolle) PVL: Schriftliches Abtestat [60 min] oder in Prüfungsvariante 2: KA [90 min] PVL: Praktikum (Antestate, Protokolle) Prüfungsvariante 1: Für Studierende des Diplomstudienganges Chemie. Prüfungsvarinte 2:Für Studierende aller Studiengänge außer dem Diplomstudiengang Chemie. PvL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden. Zeistungspunkte: To Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsvariante 1: MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [w: 1] oder in Prüfungsvariante 2: KA [w: 1] Arbeitsaufwand: Der Zeitaufwand beträgt 210h und setzt sich zusammen aus 105h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltung, die Lösungen der	die Teilnahme:			
der Modulprüfung. Die Modulprüfung umfasst: in Prüfungsvariante 1: MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [45 bis 60 min] PVL: Praktikum (Antestate, Protokolle) PVL: Schriftliches Abtestat [60 min] oder in Prüfungsvariante 2: KA [90 min] PVL: Praktikum (Antestate, Protokolle) Prüfungsvariante 1: Für Studierende des Diplomstudienganges Chemie. Prüfungsvarriante 1: Für Studierende aller Studiengänge außer dem Diplomstudiengang Chemie. PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden. Poie Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): in Prüfungsvariante 1: MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [w: 1] oder in Prüfungsvariante 2: KA [w: 1] Arbeitsaufwand: Der Zeitaufwand beträgt 210h und setzt sich zusammen aus 105h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltung, die Lösungen der	Turnus:			
der Modulprüfung. Die Modulprüfung umfasst: in Prüfungsvariante 1: MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [45 bis 60 min] PVL: Praktikum (Antestate, Protokolle) PVL: Schriftliches Abtestat [60 min] oder in Prüfungsvariante 2: KA [90 min] PVL: Praktikum (Antestate, Protokolle) Prüfungsvariante 1: Für Studierende des Diplomstudienganges Chemie. Prüfungsvarriante 1: Für Studierende aller Studiengänge außer dem Diplomstudiengang Chemie. PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden. Poie Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): in Prüfungsvariante 1: MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [w: 1] oder in Prüfungsvariante 2: KA [w: 1] Arbeitsaufwand: Der Zeitaufwand beträgt 210h und setzt sich zusammen aus 105h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltung, die Lösungen der	Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen		
in Prüfungsvariante 1: MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [45 bis 60 min] PVL: Praktikum (Antestate, Protokolle) PVL: Schriftliches Abtestat [60 min] oder in Prüfungsvariante 2: KA [90 min] PVL: Praktikum (Antestate, Protokolle) Prüfungsvariante 1: Für Studierende des Diplomstudienganges Chemie. Prüfungsvarinte 2:Für Studierende aller Studiengänge außer dem Diplomstudiengang Chemie. PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden. Zeistungspunkte: To Note: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): in Prüfungsvariante 1: MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [w: 1] oder in Prüfungsvariante 2: KA [w: 1] Arbeitsaufwand: Der Zeitaufwand beträgt 210h und setzt sich zusammen aus 105h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltung, die Lösungen der	die Vergabe von			
MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [45 bis 60 min] PVL: Praktikum (Antestate, Protokolle) PVL: Schriftliches Abtestat [60 min]	Leistungspunkten:	in Prüfungsvariante 1:		
60 min] PVL: Praktikum (Antestate, Protokolle) PVL: Schriftliches Abtestat [60 min]				
PVL: Schriftliches Abtestat [60 min] oder in Prüfungsvariante 2: KA [90 min] PVL: Praktikum (Antestate, Protokolle) Prüfungsvariante 1: Für Studierende des Diplomstudienganges Chemie. Prüfungsvarnte 2:Für Studierende aller Studiengänge außer dem Diplomstudiengang Chemie. PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden. PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden. Zeistungspunkte: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): in Prüfungsvariante 1: MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [w: 1] oder in Prüfungsvariante 2: KA [w: 1] Arbeitsaufwand: Der Zeitaufwand beträgt 210h und setzt sich zusammen aus 105h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltung, die Lösungen der		, , , , , , , , , , , , , , , , , , , ,		
oder in Prüfungsvariante 2: KA [90 min] PVL: Praktikum (Antestate, Protokolle) Prüfungsvariante 1: Für Studierende des Diplomstudienganges Chemie. Prüfungsvarnte 2:Für Studierende aller Studiengänge außer dem Diplomstudiengang Chemie. PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden. Pie Note: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): in Prüfungsvariante 1: MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [w: 1] oder in Prüfungsvariante 2: KA [w: 1] Arbeitsaufwand: Der Zeitaufwand beträgt 210h und setzt sich zusammen aus 105h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltung, die Lösungen der		PVL: Praktikum (Antestate, Protokolle)		
in Prüfungsvariante 2: KA [90 min] PVL: Praktikum (Antestate, Protokolle) Prüfungsvariante 1: Für Studierende des Diplomstudienganges Chemie. Prüfungsvarnte 2:Für Studierende aller Studiengänge außer dem Diplomstudiengang Chemie. PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden. Leistungspunkte: 7 Note: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): in Prüfungsvariante 1: MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [w: 1] oder in Prüfungsvariante 2: KA [w: 1] Arbeitsaufwand: Der Zeitaufwand beträgt 210h und setzt sich zusammen aus 105h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltung, die Lösungen der		PVL: Schriftliches Abtestat [60 min]		
KA [90 min] PVL: Praktikum (Antestate, Protokolle) Prüfungsvariante 1: Für Studierende des Diplomstudienganges Chemie. Prüfungsvarnte 2:Für Studierende aller Studiengänge außer dem Diplomstudiengang Chemie. PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden. Zeistungspunkte: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): in Prüfungsvariante 1: MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [w: 1] oder in Prüfungsvariante 2: KA [w: 1] Arbeitsaufwand: Der Zeitaufwand beträgt 210h und setzt sich zusammen aus 105h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltung, die Lösungen der		oder		
PVL: Praktikum (Antestate, Protokolle) Prüfungsvariante 1: Für Studierende des Diplomstudienganges Chemie. Prüfungsvarnte 2:Für Studierende aller Studiengänge außer dem Diplomstudiengang Chemie. PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden. Zeistungspunkte: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): in Prüfungsvariante 1: MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [w: 1] oder in Prüfungsvariante 2: KA [w: 1] Arbeitsaufwand: Der Zeitaufwand beträgt 210h und setzt sich zusammen aus 105h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltung, die Lösungen der		in Prüfungsvariante 2:		
Prüfungsvariante 1: Für Studierende des Diplomstudienganges Chemie. Prüfungsvarnte 2:Für Studierende aller Studiengänge außer dem Diplomstudiengang Chemie. PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden. Zeistungspunkte: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): in Prüfungsvariante 1: MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [w: 1] oder in Prüfungsvariante 2: KA [w: 1] Arbeitsaufwand: Der Zeitaufwand beträgt 210h und setzt sich zusammen aus 105h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltung, die Lösungen der		KA [90 min]		
Prüfungsvarnte 2:Für Studierende aller Studiengänge außer dem Diplomstudiengang Chemie. PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden. Zeistungspunkte: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): in Prüfungsvariante 1: MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [w: 1] oder in Prüfungsvariante 2: KA [w: 1] Arbeitsaufwand: Der Zeitaufwand beträgt 210h und setzt sich zusammen aus 105h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltung, die Lösungen der		PVL: Praktikum (Antestate, Protokolle)		
Diplomstudiengang Chemie. PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden. Zeistungspunkte: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): in Prüfungsvariante 1: MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [w: 1] oder in Prüfungsvariante 2: KA [w: 1] Arbeitsaufwand: Der Zeitaufwand beträgt 210h und setzt sich zusammen aus 105h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltung, die Lösungen der		Prüfungsvariante 1: Für Studierende des Diplomstudienganges Chemie.		
PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden. Zeistungspunkte: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): in Prüfungsvariante 1: MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [w: 1] oder in Prüfungsvariante 2: KA [w: 1] Arbeitsaufwand: Der Zeitaufwand beträgt 210h und setzt sich zusammen aus 105h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltung, die Lösungen der		Prüfungsvarnte 2:Für Studierende aller Studiengänge außer dem		
Leistungspunkte: 7 Note: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): in Prüfungsvariante 1: MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [w: 1] oder in Prüfungsvariante 2: KA [w: 1] Arbeitsaufwand: Der Zeitaufwand beträgt 210h und setzt sich zusammen aus 105h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltung, die Lösungen der		Diplomstudiengang Chemie.		
Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): in Prüfungsvariante 1: MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [w: 1] oder in Prüfungsvariante 2: KA [w: 1] Arbeitsaufwand: Der Zeitaufwand beträgt 210h und setzt sich zusammen aus 105h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltung, die Lösungen der		PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden.		
Prüfungsleistung(en): in Prüfungsvariante 1: MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [w: 1] oder in Prüfungsvariante 2: KA [w: 1] Arbeitsaufwand: Der Zeitaufwand beträgt 210h und setzt sich zusammen aus 105h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltung, die Lösungen der	Leistungspunkte:	7		
in Prüfungsvariante 1: MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [w: 1] oder in Prüfungsvariante 2: KA [w: 1] Arbeitsaufwand: Der Zeitaufwand beträgt 210h und setzt sich zusammen aus 105h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltung, die Lösungen der	Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)		
MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [w: 1] oder in Prüfungsvariante 2: KA [w: 1] Arbeitsaufwand: Der Zeitaufwand beträgt 210h und setzt sich zusammen aus 105h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltung, die Lösungen der		Prüfungsleistung(en):		
oder in Prüfungsvariante 2: KA [w: 1] Arbeitsaufwand: Der Zeitaufwand beträgt 210h und setzt sich zusammen aus 105h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltung, die Lösungen der		in Prüfungsvariante 1:		
KA [w: 1] Arbeitsaufwand: Der Zeitaufwand beträgt 210h und setzt sich zusammen aus 105h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltung, die Lösungen der		, , , , , , , , , , , , , , , , , , , ,		
KA [w: 1] Arbeitsaufwand: Der Zeitaufwand beträgt 210h und setzt sich zusammen aus 105h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltung, die Lösungen der		in Prüfungsvariante 2:		
Arbeitsaufwand: Der Zeitaufwand beträgt 210h und setzt sich zusammen aus 105h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltung, die Lösungen der				
Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltung, die Lösungen der	Arbeitsaufwand:			
Nachbereitung der Lehrveranstaltung, die Lösungen der		_		
iopungsaujgapen sowie die Prutungsvorbereitung.		Übungsaufgaben sowie die Prüfungsvorbereitung.		

Daten:	ANCH3. BA. Nr. 144 Stand: 26.01.2015 📜 Start: WiSe 2013		
Modulname:	Anorganische Chemie der Nebengruppenelemente		
(englisch):	Inorganic Chemistry of the Transition Elements		
Verantwortlich(e):	Kroke, Edwin / Prof. Dr.		
Dozent(en):	Kroke, Edwin / Prof. Dr.		
Institut(e):	Institut für Anorganische Chemie		
Dauer:	1 Semester		
Qualifikationsziele /	Die Studierenden sollen einen Überblick über die Chemie der		
Kompetenzen:	Nebengruppenelemente erhalten. Sie sollen grundlegendes Verständnis		
·	der Konzepte der Koordinationschemie sowie der Organometallchemie		
	entwickeln.		
Inhalte:	Grundlagen der Kristall- bzw. Ligandenfeldtheorie, Magnetochemie;		
	Grundlagen der Festkörperchemie; Vorkommen, Darstellung,		
	Eigenschaften und Anwendungen der folgenden Nebengruppenelemente		
	und ihrer wichtigsten Verbindungen: Zn-Gruppe, Münzmetalle,		
	Lanthanoide und Aktinoide, Ti-Gruppe, V-Gruppe, Cr-Gruppe, Mn-		
	Gruppe, Eisenmetalle, Platinmetalle. Präparation einfacher anorganisch-		
	chemischer Verbindungen, einfache anorganisch-chemische		
	Strukturaufklärung.		
Typische Fachliteratur:	Jander/Blasius: Lehrbuch der analytischen und präparativen		
	anorganischen Chemie, Hirzel; Holleman/Wiberg: Lehrbuch der		
	Anorganischen Chemie, de Gruyter; D. F. Shriver, P. W. Atkins, C. H.		
	Langford: Anorganische Chemie, Wiley-VCH; E. Riedel: Anorganische		
	Chemie, de Gruyter; U. Müller: Anorganische Strukturchemie, Teubner.		
Lehrformen:	S1 (WS): Vorlesung (2 SWS)		
	S1 (WS): Übung (1 SWS)		
	S1 (WS): Praktikum (6 SWS)		
Voraussetzungen für	Empfohlen:		
die Teilnahme:	Anorganische Chemie der Hauptgruppenelemente, 2012-07-02		
	Stöchiometrisches Rechnen und qualitative anorganische Stoffanalyse,		
	2012-07-02		
Turnus:	jährlich im Wintersemester		
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen		
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:		
Leistungspunkten:	in Prüfungsvariante 1:		
	MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [45 bis		
	60 min]		
	PVL: Übungsaufgaben		
	PVL: Abschluss des Praktikums (Antestate, Protokolle)		
	PVL: Schriftliches Abtestat [60 min]		
	oder		
	in Prüfungsvariante 2:		
	KA [90 min]		
	PVL: Übungsaufgaben mit Diskussionsbeiträgen		
	PVL: Abschluss des Praktikums (Antestate, Protokolle)		
	Prüfungsvariante 1:Für Studierende des Diplomstudienganges Chemie.		
	Prüfungsvariante 2:Für Studierende aller Studiengänge außer dem		
	Diplomstudiengang Chemie.		
	PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden.		
Leistungspunkte:	9		
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)		
	Prüfungsleistung(en):		
	in Prüfungsvariante 1:		
	MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPAC. [w: 1]		
	oder		
ı	T I		

	in Prüfungsvariante 2: KA [w: 1]
Arbeitsaufwand:	Der Zeitaufwand beträgt 270h und setzt sich zusammen aus 135h Präsenzzeit und 135h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltungen, die Lösungen der Übungsaufgaben sowie die Prüfungsvorbereitung.

Daten:	BUWANA. MA. Nr. 3137 Stand: 29.06.2012 📜	Start: WiSe 2012	
Modulname:	Bio-, Umwelt- und Werkstoffanalytik		
(englisch):	Bio, Environmental and Materials Analysis		
Verantwortlich(e):	Otto, Matthias / Prof. Dr.		
Dozent(en):	Heitmann, Johannes / Prof. Dr.		
	Otto, Matthias / Prof. Dr.		
Institut(e):	Institut für Angewandte Physik		
	Institut für Analytische Chemie		
Dauer:	1 Semester		
Qualifikationsziele /	Die Studierenden sollen befähigt werden, chemische	Analysen von	
Kompetenzen:	Elementen und Verbindungen mit komplexen/kombinierten		
•	Analysenverfahren in Proben aus den Bio-, Umwelt-		
	Werkstoffwissenschaften zu verstehen und später se		
	können.		
Inhalte:	Analytik von Bio-, Umwelt- und Werkstoffproben,		
	Probenvorbereitungstechniken, Spurenanalysen, Ele	mentspeziation,	
	Kompartimentierung, Summenparameter, Massensp	-	
	(Ionisation/ Anregung durch Laser, Ionen, Elektroner		
	Wechselwirkung von Elektronenstrahl- und Ionenstra		
	Material und abgeleitete Analyseverfahren: Streuana		
	Sekundärteilchenemission, Elektronen- und Röntgen	-	
	(Auger, XPS, UPS, RBS, ISS, SIMS, SNMS, XRF, PIXE),	•	
	(Extraktion, Chromatographie, Elektrophorese),		
	Kernstrahlungsmethoden, Nachweisgrenzen, ortsaufgelöste Analyse und		
	abbildende Verfahren.	gereste / maryse arra	
Typische Fachliteratur:			
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Chemistry: Wiley-VCH		
Lehrformen:	S1 (WS): Bio- und Umweltanalytik / Vorlesung (2 SWS)		
	S1 (WS): Übung (1 SWS)	-,	
	\$1 (WS): Werkstoffanalytik / Vorlesung (1 SWS)		
Voraussetzungen für	Empfohlen:		
die Teilnahme:			
	"Instrumentelle Analytische Chemie", "Methoden zu		
	Struktur- und Stoffeigenschaften" vermittelt werden		
Turnus:	iährlich im Wintersemester		
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen		
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:		
Leistungspunkten:	KA [60 bis 90 min]		
	, , , , , , , , , , , , , , , , , , , ,		
Leistungspunkte:	6		
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)	
	Prüfungsleistung(en):	,	
	KA [w: 1]		
Arbeitsaufwand:	Der Zeitaufwand beträgt 180h und setzt sich zusam	men aus 60h	
	Präsenzzeit und 120h Selbststudium. Letzteres umfa		
	Frasenzzeit und 12011 Seibststudium, Letzteres unne	issi die voi- dila	
	Nachbereitung der Lehrveranstaltungen sowie die V		

Daten:	BIOPHYS .BA.Nr. 167 Stand: 18.09.2009 📜 Start: WiSe 2009	
Modulname:	Biophysikalische Chemie	
(englisch):	Biophysical Chemistry	
Verantwortlich(e):	Seidel, Jürgen / Dr.	
Dozent(en):	Seidel, Jürgen / Dr.	
	Hüttl. Regina / Dr.	
Institut(e):	Institut für Physikalische Chemie	
Dauer:	1 Semester	
Qualifikationsziele /	Vorlesung: Anwendung physikalisch-chemischer Methoden und Konzepte	
Kompetenzen:	zur Beschreibung, Behandlung und Untersuchung von biochemischen	
	Prozessen.	
	Praktikum: Vermittlung grundlegender physikalisch-chemischer	
	Messstrategien für die Untersuchung biochemischer Systeme.	
Inhalte:	Grundlagen der Enzymkinetik, Bestimmung von	
	Enzymaktivitäten, Michaelis-Menten, Enzyminhibierung, Kooperativität	
	und Allosterie, Immobilisierung von Enzymen, Kinetik immobilisierter	
	Enzyme, Irreversible Prozesse und Informationen in biologischen	
	Systemen, Grundlagen der irreversiblen Thermodynamik biologischer	
	Systeme, Nichtlineare Phänomene, Zellen als offene	
	Systeme, Thermodynamik mikrobieller	
	Wachstumsprozesse, Transportprozesse in biologischen	
	Systemen, Osmotisches und Verteilungsgleichgewicht, Stofftransport	
	und Diffusion, Wärmetransport und Thermoregulation, Struktur und	
	Dynamik von Bio- und Modellmembranen, Transportprozesse in	
	biologischen Membranen, Carrier-Transport und Transport durch	
	Kanäle, Aktiver Transport, Membranpotentiale, Nährstofftransport in	
	höher organisierten Lebewesen, Biochemische Energetik: Energie- und	
	Exergiebilanzen von biochemischen Prozessen.	
Typische Fachliteratur:	H. Bisswanger, Enzymkinetik, Wiley-VCH;	
	W. Hartmeier, Immobilisierte Biokatalysatoren, Springer Verlag;	
	R. Winter, F. Noll, Methoden der Biophysikalischen Chemie, Teubner	
	Studienbücher;	
	G. Adam, P. Läuger G. Stark, Physikalische Chemie und Biophysik,	
	Springer-Verlag;	
	T. Ackermann, Physikalische Biochemie, Springer-Verlag;	
	J. Breckow, R. Greinert, Biophysik - Eine Einführung, Walter de Gruyter-	
	Verlag;	
Lehrformen:	S1 (WS): Vorlesung (2 SWS)	
	S1 (WS): Übung (1 SWS)	
	S1 (WS): Praktikum (2 SWS)	
Voraussetzungen für	Empfohlen:	
die Teilnahme:	Grundlagen der Physikalischen Chemie für Ingenieure, 2009-08-11	
	Grundlagen der Physikalischen Chemie für Werkstoffwissenschaft,	
	2009-05-27	
Turnus:	jährlich im Wintersemester	
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen	
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:	
Leistungspunkten:	KA [90 min]	
	PVL: Abschluss des Praktikums	
	PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden.	
Leistungspunkte:	6	
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)	
	Prüfungsleistung(en):	
	KA [w: 1]	
Arboitsoufwand		
Arbeitsaufwand:	Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 75h	

Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltung, insbesondere die Erarbeitung der Protokolle für die Praktika und die Klausurvorbereitung.

Daten:	BTP. MA. Nr. 3027 Stand: 16.07.2009 Start: SoSe 2010		
Modulname:	Biotechnologische Produktionsprozesse		
(englisch):	Biotechnological Production Processes		
Verantwortlich(e):	Schlömann, Michael / Prof. Dr.		
	Bertau, Martin / Prof. Dr.		
Dozent(en):	Schlömann, Michael / Prof. Dr.		
, ,	Bertau, Martin / Prof. Dr.		
Institut(e):	Institut für Biowissenschaften		
, ,	Institut für Technische Chemie		
Dauer:	1 Semester		
Qualifikationsziele /	Der Studierende soll Kenntnisse und Kompetenzen über die		
Kompetenzen:	Einsatzgebiete biotechnologischer Methoden in Produktionsprozessen		
	und deren technische Realisierung erhalten sowie Einblick in aktuelle		
	Entwicklungen.		
Inhalte:	Grundlagen der Biotechnologie, Weiße Biotechnologie,		
	Bioraffinerie/nachwachsende Rohstoffe, Biokatalyse, Fermentationen,		
	Solubilisierungsstrategien, Immobilisierungsstrategien, wichtige		
	biotechnologische Größen, mikrobielles Wachstum, Upstream-		
	Processing, Modelle biotechnologischer Prozesse, Downstream-		
	Processing, Anorganisch-biotechnologische Prozesse		
Typische Fachliteratur:	H. Renneberg, Biotechnologie für Einsteiger, Elsevier;		
	H. Chmiel: Bioprozeßtechnik, Elsevier;		
	W. Storhas: Bioverfahrensentwicklung, Wiley-VCH;		
	G.E. Jeromin, M. Bertau: Bioorganikum, Wiley-VCH;		
	A. Liese et al.: Industrial Biotransformations, Wiley-VCH.		
Lehrformen:	S1 (SS): Vorlesung (3 SWS)		
Letii Torriicii.	S1 (SS): Wit einer Tagesexkursion. / Praktikum (3 SWS)		
Voraussetzungen für	Empfohlen:		
die Teilnahme:	Grundlegende Kenntnisse der Technischen Chemie, der stofflichen und		
	theoretischen Aspekte der Anorg., Org. und Physikal. Chemie, sowie der		
	Physik und Mathematik.		
Turnus:	jährlich im Sommersemester		
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen		
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:		
Leistungspunkten:	KA* [90 min]		
	AP*: Schriftliche Ausarbeitung über die Ergebnisse der		
	Praktikumsaufgabe		
	i raktikamsaargase		
	* Bei Modulen mit mehreren Prüfungsleistungen muss diese		
	Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0)		
	bewertet sein.		
Leistungspunkte:	6		
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)		
	Prüfungsleistung(en):		
	KA* [w: 2]		
	AP*: Schriftliche Ausarbeitung über die Ergebnisse der		
	Praktikumsaufgabe [w: 1]		
	* Bei Modulen mit mehreren Prüfungsleistungen muss diese		
	Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0)		
	bewertet sein.		
Arbeitsaufwand:	Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 90h		
	Präsenzzeit und 90h Selbststudium. Letzteres umfasst die Vor- und		
	Prasenzzen und 900 Selbsisionium Terzieres umiassi die vor- und		
	Nachbereitung der Lehrveranstaltungen, die schriftliche Ausarbeitung sowie die Vorbereitung auf die Klausurarbeit.		

Daten:	SSCHMELZ. MA. Nr. 3138	Stand: 03.03.2010 🕏	Start: SoSe 2011
Modulname:	Chemie der Salzschmelzen und Ionenflüssigkeiten		
(englisch):	Chemistry of Molten Salts and Ionic Liquids		
Verantwortlich(e):	Voigt, Wolfgang / Prof. D		
Dozent(en):	Voigt, Wolfgang / Prof. [
Institut(e):	Institut für Anorganische		
Dauer:	1 Semester		
Qualifikationsziele /	Nach Abschluss des Moduls ist der Student in der Lage, das		
Kompetenzen:	Anwendungspotential von Salzschmelzen für chemische Synthesen, die Herstellung von Metallen, Hochtemperaturwerkstoffen und Werkstoffbeschichtungen einzuschätzen sowie eigenständig geeignete Salzsysteme für diese Anwendungen zusammen zu stellen und in ihren Zusammensetzungen zu optimieren.		
Inhalte:	Struktur und Eigenschaften reiner Salzschmelzen, Änderungen von Struktur und Eigenschaften beim Mischen, experimentelle Techniken für Salzschmelzen, thermodynamische Modelle von Schmelzmischungen, Schmelzdiagramme, Chemische Reaktionen in Salzschmelzen, Raumtemperatursalzschmelzen, Salzhydratschmelzen, Anwendungen, Salzschmelzen in der präparativen Chemie		
Typische Fachliteratur:	Adv. in Molten Salt Chemistry, Vol. 1 - 7; P. Wasserscheid, T. Welton "Ionic Liquids in Synthesis"		
Lehrformen:	S1 (SS): Vorlesung (2 SWS) S1 (SS): Praktikum (4 SWS)		
Voraussetzungen für	Empfohlen:		
die Teilnahme:	Bachelorabschluss in Chemie, Werkstoffwissenschaften, Physik		
Turnus:	jährlich im Sommersem	ester	
Voraussetzungen für	Voraussetzung für die	Vergabe von Leistungsp	unkten ist das Bestehen
die Vergabe von	der Modulprüfung. Die N	lodulprüfung umfasst:	
Leistungspunkten:	AP: Erfolgreiche Bearbe Die Modulnote ergibt sic Übungs- und Praktikums	ch aus dem Mittelwert de	
Leistungspunkte:	6		
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): AP: Erfolgreiche Bearbeitung von 3 Übungs- und Praktikumsaufgaben [w: 1]		
Arbeitsaufwand:	Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 90h Präsenzzeit und 90h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Vorlesung, die Bearbeitung der Übungsaufgaben und Auswertung der Praktikumsversuche.		

Daten:	CRT. MA. Nr. 3149 Stand: 22.06.2015 Start: WiSe 2015		
Modulname:	Chemische Reaktionstechnik		
(englisch):	Chemical Reaction Engineering		
Verantwortlich(e):	Kureti, Sven / Prof. Dr. rer. nat		
Dozent(en):	Kureti, Sven / Prof. Dr. rer. nat		
Institut(e):	Institut für Energieverfahrenstechnik und Chemieingenieurwesen		
Dauer:	2 Semester		
Qualifikationsziele /	Vermittlung von Kenntnissen und Fähigkeiten zur Reaktorauswahl, zur		
Kompetenzen:	technischen Reaktionsführung sowie zur Berechnung von Reaktoren für		
	homogene und heterogene chemische Umsetzungen.		
Inhalte:	Allgemeine Stoff- und Wärmebilanzgleichung, Reaktionskinetik,		
	Verweilzeitverhalten von Reaktoren, Stoff- und Wärmebilanzen der		
	Idealreaktoren, Kriterien für die Wahl des Reaktortyps, reale Reaktoren,		
	Einfluss des Stoffübergangs auf den Reaktorbetrieb (u. a. heterogen		
	katalysierte Reaktionen), nicht katalysierte Gas-Feststoff-Reaktionen,		
	Rechenprogramme für komplexe Probleme.		
Typische Fachliteratur:	E. Fitzer, W. Fritz: Technische Chemie, Springer-Verlag		
-	M. Baerns, H. Hoffmann, A. Renken: Chemische Reaktionstechnik, VCH-		
	Verlag		
	J. Hagen: Chemische Reaktionstechnik, VCH-Verlag		
Lehrformen:	S1 (WS): Reaktionstechnik I / Vorlesung (3 SWS)		
	S1 (WS): Reaktionstechnik I / Übung (1 SWS)		
	S2 (SS): Reaktionstechnik II / Vorlesung (2 SWS)		
	S2 (SS): Reaktionstechnik II / Übung (1 SWS)		
Voraussetzungen für	Empfohlen:		
die Teilnahme:	Grundlegende Kenntnisse der Technischen Chemie, der stofflichen und		
	theoretischen Aspekte der Anorg., Org. und Physikal. Chemie, sowie der		
	Physik und Mathematik.		
Turnus:	jährlich im Wintersemester		
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen		
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:		
Leistungspunkten:	KA*: Reaktionstechnik I [180 min]		
	KA*: Reaktionstechnik II [120 min]		
	* Bei Modulen mit mehreren Prüfungsleistungen muss diese		
	Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0)		
	bewertet sein.		
Leistungspunkte:	6		
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)		
	Prüfungsleistung(en):		
	KA*: Reaktionstechnik I [w: 2]		
	KA*: Reaktionstechnik II [w: 1]		
	* Bei Modulen mit mehreren Prüfungsleistungen muss diese		
	Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0)		
	bewertet sein.		
Arbeitsaufwand:	Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 105h		
	Präsenzzeit und 75h Selbststudium. Letzteres umfasst die Vor- und		
	Nachbereitung der Lehrveranstaltungen sowie die Vorbereitung auf die		
	Klausurarbeiten.		
	inidusurar bettern.		

Daten:	PYCH1. BA. Nr. 146 Stand: 06.06.2012 Start: SoSe 2013		
Modulname:	Chemische Thermodynamik und Kinetik		
(englisch):	Chemical Thermodynamics and Kinetics		
Verantwortlich(e):	Mertens, Florian / Prof. Dr.		
Dozent(en):	Mertens, Florian / Prof. Dr.		
	Mögel, Hans-Jörg / Prof. Dr.		
	Hüttl, Regina / Dr.		
Institut(e):	Institut für Physikalische Chemie		
Dauer:	1 Semester		
Qualifikationsziele /	Die Studierenden erlernen die Grundlagen der Thermodynamik und		
Kompetenzen:	Kinetik mit besonderer Gewichtung auf Stoffwandlungsprozesse. Sie sind		
	zur mathematischen Formulierung und Lösung einfacher Probleme der		
	Thermodynamik und Kinetik befähigt.		
Inhalte:	1. Grundlegende Begriffe		
	2. Thermodynamik: Charakterisierung von Zuständen und		
	Zustandsänderungen stofflicher Systeme, Methoden der chemischen		
	Thermodynamik, Aggregatzustände, reales Verhalten von Gasen. Erster		
	Hauptsatz der Thermodynamik mit Anwendungen: Thermochemie -		
	Veränderung der inneren Energie bzw Enthalpie bei		
	Stoffwandlungsprozessen. Zweiter Hauptsatz der Thermodynamik mit		
	Anwendungen: Statistische Definition der Entropie, Freie Energie und		
	Enthalpie, chemisches Potential.		
	3. Kinetik: Grundbegriffe der Formalkinetik, Gleichgewichtseinstellung,		
	Folgereaktionen, Parallelreaktionen, Kettenreaktionen,		
	Bodensteinprinzip, Temperaturabhängigkeit der		
	Geschwindigkeitskonstanten, Eyring-Theorie, homogene und heterogene		
	Katalyse, Enzymkatalyse, Autokatalyse, LFE-Beziehungen, primärer		
	Salzeffekt, Grdl. der Photochemie.		
Typische Fachliteratur:	Lehrbuch Physikalische Chemie (z. B., P. W. Atkins: Physikalische		
	Chemie, Wiley-VCH).		
Lehrformen:	S1 (SS): Vorlesung (4 SWS)		
	S1 (SS): Übung (2 SWS)		
Voraussetzungen für	Empfohlen:		
die Teilnahme:	Kenntnisse der gymnasialen Oberstufe.		
Turnus:	jährlich im Sommersemester		
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen		
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:		
Leistungspunkten:	KA [90 min]		
	PVL: Übungsaufgaben		
	PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden.		
Leistungspunkte:	7		
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)		
	Prüfungsleistung(en):		
	KA [w: 1]		
Arbeitsaufwand:	Der Zeitaufwand beträgt 210h und setzt sich zusammen aus 90h		
	Präsenzzeit und 120h Selbststudium. Letzteres umfasst die Vor- und		
	Nachbereitung der Lehrveranstaltung, die Lösungen der		
	Übungsaufgaben sowie die Vorbereitung auf die Klausurarbeit.		

Daten:	CHEMODB. MA. Nr. Stand: 02.07.2012 Start: WiSe 2012		
Modulname:	Chemometrie		
(englisch):	Chemometrics		
Verantwortlich(e):	Otto, Matthias / Prof. Dr.		
Dozent(en):	Otto, Matthias / Prof. Dr.		
, ,	Tesch, Silke / Dr.		
Institut(e):	Institut für Analytische Chemie		
Dauer:	1 Semester		
Qualifikationsziele /	Die Studierenden sollen befähigt werden, univariate und multivariate		
Kompetenzen:	statistische Methoden zur Beschreibung und Bewertung analytisch- chemischer und anderer naturwissenschaftlicher Daten anwenden und dabei Informationen naturwissenschaftlicher Datenbanken einbeziehen zu können.		
Inhalte:	Statistische Grundlagen		
	Signalverarbeitung		
	Zeitreihenanalyse		
	Versuchsplanung und experimentelle Optimierung		
	 Mustererkennung (Projektionsmethoden, Clusteranalyse, Diskriminanzanalyse, neuronale Netze) 		
	lineare und nicht-lineare Modellierung		
	Kodierung chemischer Strukturen		
Bibliothekssuche			
	Faktendatenbanken		
Typische Fachliteratur:	M. Otto, Chemometrics, Wiley-VCH; J. Gasteiger, T. Engel (Hrsg.), Chemoinformatics: a textbook, Wiley-VCH; E. Poetzsch, Information Retrieval: Einführung in Grundlagen und Methoden, Verl. F. Berlin-Brandenburg		
Lehrformen:	S1 (WS): Vorlesung (2 SWS) S1 (WS): Übung (1 SWS)		
Voraussetzungen für	Empfohlen:		
die Teilnahme:	Höhere Mathematik I für naturwissenschaftliche Studiengänge, 2014-06-01 Höhere Mathematik II für naturwissenschaftliche Studiengänge,		
	2014-06-01		
Turnuci	Grundkenntnisse im Umgang mit naturwissenschaftlichen Datenbanken		
Turnus:	jährlich im Wintersemester Veraussetzung für die Vergabe von Leistungspunkten ist das Rosteben		
Voraussetzungen für die Vergabe von	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst:		
Leistungspunkten:	KA [60 bis 90 min]		
Leistungspunkte:	4		
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)		
ivote.	Prüfungsleistung(en): KA [w: 1]		
Arbeitsaufwand:	Der Zeitaufwand beträgt 120h und setzt sich zusammen aus 45h		

Präsenzzeit und 75h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltungen sowie die Erarbeitung des Belegs.

Daten:	DC. MA. Nr. 3517	Stand: 26.03.2015 🕏	Start: SoSe 2016
Modulname:	Diplomarbeit Cher	nie mit Kolloquium	
(englisch):	Diplom Thesis with Oral Examination		
Verantwortlich(e):	Alle Hochschullehrer der Fakultät für Chemie und Physik		
	Mögel, Hans-Jörg / Prof. Dr.		
Dozent(en):			
Institut(e):	Fakultät für Chemie und Physik		
	Institut für Physikalische Chemie		
Dauer:	6 Monat(e)		
Qualifikationsziele /	Selbstständiges Löse	en einer wissenschaftlichen F	Problemstellung unter
Kompetenzen:	Anwendung von mod	dernen experimentellen und	theoretischen
	Methoden		
Inhalte:	variabel		
Typische Fachliteratur:	Referateorgane, Orig	ginalveröffentlichungen in wi	ssenschaftlichen
	Zeitschriften, Methoden-Handbücher, Datenbanken		
Lehrformen:	S1 (SS): Abschlussar		
Voraussetzungen für	Abschluss aller Pflichtmodule sowie von Wahlwahlpflichtmodulen im		
die Teilnahme:	Umfang von mindestens 50 Leistungspunkten		
Turnus:	ständig		
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen		
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:		
Leistungspunkten:	AP*: Schriftliche Ausarbeitung		
	AP*: Mündliche Vertomin]	eidigung (20 min) mit Diskus	sion (max. 40 min) [60
	Prüfungsleistung bes bewertet sein.	ehreren Prüfungsleistungen standen bzw. mit mindestens	
Leistungspunkte:	30		
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)		
	Prüfungsleistung(en		
	AP*: Schriftliche Aus		
	AP*: Mündliche Verte	eidigung (20 min) mit Diskus	sion (max. 40 min) [w:
	* Bei Modulen mit m	ehreren Prüfungsleistungen	muss diese
	Prüfungsleistung bes	standen bzw. mit mindestens	s "ausreichend" (4,0)
	bewertet sein.		
Arbeitsaufwand:	Der Zeitaufwand bet	rägt 900h.	-

Daten:	ENCHE1. BA. Nr. 082 Stand: 24.02.2014 \$ Start: WiSe 20		
Modulname:	Einführung in die Fachsprache Englisch für Naturwissenschafte		
	(Chemie)		
(englisch):	English for Specific Purposes/Chemistry		
Verantwortlich(e):	<u>Kreher, Johannes</u>		
Dozent(en):	Kreher, Johannes		
Institut(e):	<u>Fachsprachenzentrum</u>		
Dauer:	2 Semester		
Qualifikationsziele /	Der Teilnehmer erwirbt grundlegende Fertigkeiten der schriftlichen und		
Kompetenzen:	mündlichen Kommunikation in der Fachsprache, einschließlich eines		
	allgemeinwissenschaftlichen und fachspezifischen Wortschatzes sowie		
	fachsprachlicher Grundstrukturen und translatorischer Fertigkeiten.		
Inhalte:	Atomic Structure		
	Impact of Quantum Theory		
	Elements and Compounds		
	Introduction to Organic Chemistry		
	Nomenclature of Inorganic and Organic Compounds		
	Methods of Water Treatment		
	Separation of Crude Oil/Catalytic Cracking		
Typische Fachliteratur:	English for Chemistry, Ceramics, Glass and Building Materials, 1st and		
	2nd semester; Language Centre TU Bergakademie Freiberg 2000		
Lehrformen:	S1 (WS): Mit Nutzung des Sprachlabors / Übung (2 SWS)		
	S2 (SS): Mit Nutzung des Sprachlabors / Übung (2 SWS)		
Voraussetzungen für	Empfohlen:		
die Teilnahme:	Kenntnisse der gymnasialen Oberstufe bzw. der Stufe UNIcert II		
Turnus:	jährlich im Wintersemester		
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen		
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:		
Leistungspunkten:	KA: Im Sommersemester [90 min]		
	PVL: Aktive Teilnahme am Unterricht (mind. 80%) bzw. adäquate		
	Leistung		
	PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden		
Leistungspunkte:	4		
Note: Die Note ergibt sich entsprechend der Gewichtung (w) aus fo			
	Prüfungsleistung(en):		
	KA: Im Sommersemester [w: 1]		
Arbeitsaufwand:	Der Zeitaufwand beträgt 120h und setzt sich zusammen aus 60h		
	Präsenzzeit und 60h Selbststudium. Letzteres umfasst die Vor-und		
	Nachbereitung der Lehrveranstaltung sowie die Klausurvorbereitung.		

Daten:	ANCHWP2. BA. Nr. 147 Stand: 26.03.2015 Start: WiSe 2014		
Modulname:	Einführung in die Festkörper- und Werkstoffchemie		
(englisch):	Introduction to Solid State and Materials Chemistry		
Verantwortlich(e):	Frisch, Gero / Prof. Dr.		
Dozent(en):	Frisch, Gero / Prof. Dr.		
Institut(e):	Institut für Anorganische Chemie		
Dauer:	2 Semester		
Qualifikationsziele /	Nach Abschluss des Moduls sollten die Studierenden in der Lage sein:		
Kompetenzen:			
	 einfache Kristallstrukturen einem Strukturtyp zuzuordnen und vergleichend zu beschreiben, mit Hilfe kristallografischer Datenbanken Kristallstrukturen zu recherchieren und graphisch darzustellen, die Funktionsweise röntgendiffraktometrischer und thermoanalytischer Methoden zu beschreiben, einfache Festkörperpräparationen durchzuführen und die Produkte chemisch und physikalisch zu charakterisieren, physikalische und chemische Eigenschaften von Festkörpern aus 		
	deren Struktur zu begründen.		
Inhalte:	 Grundlagen von Struktur und Symmetrie Strukturtypen einfacher anorganischer Verbindungen Verwendung kristallographischer Datenbanken und Zeichenprogramme Grundlagen ausgewählter Charakterisierungsmethoden wie Röntgenbeugung und Thermoanalyse Ausgewählte Festkörpersynthesen Struktur-Eigenschafts-Beziehungen ausgewählter Materialien (z.B. elektronische, magnetische und optische Eigenschaften) 		
Typische Fachliteratur:	L. Smart, E. Moore: Solid State Chemistry: An Introduction		
l ypische i denniceratur.	U. Müller: Anorganische Strukturchemie		
	W. Borchardt-Ott: Kristallographie		
Lehrformen:	S1 (WS): Vorlesung (2 SWS)		
	S2 (SS): Praktikum mit Übungen / Praktikum (3 SWS)		
Voraussetzungen für	Empfohlen:		
die Teilnahme:	Grundmodule in Chemie und Physik		
Turnus:	jährlich im Wintersemester		
Voraussetzungen für die Vergabe von	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst:		
Leistungspunkten:	MP* [30 min]		
	AP*: Benotete Praktikumsaufgaben * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein.		
Leistungspunkte:	6		
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): MP* [w: 1] AP*: Benotete Praktikumsaufgaben [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein.		
Arbeitsaufwand:	Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 75h		
Albeitsaulwalla.	Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Vorlesung, die Bearbeitung der Übungsaufgaben und		

Auswertung der Praktikums	versuche.
---------------------------	-----------

Daten:	EWSP. MA. Nr. 3143 Stand: 10.03.2010 Start: WiSe 2010		
Modulname:	Energiewandlung und Speicherung		
(englisch):	Energy Conversion and Storage		
Verantwortlich(e):	Mertens, Florian / Prof. Dr.		
Dozent(en):	Mertens, Florian / Prof. Dr.		
	Neuhaus, Holger / Dr.		
Institut(e):	Institut für Physikalische Chemie		
	Institut für Experimentelle Physik		
Dauer:	1 Semester		
Qualifikationsziele /	Die Studierenden sollen schwerpunktmäßig die Grundprinzipien und die		
Kompetenzen:	technische Realisierung der Umwandlung von Licht in elektrische und		
	thermische Energie und die Grundelemente einer möglichen		
	nichtkonventionellen Energie- und Stoffwirtschaftwirtschaft kennen		
	lernen.		
Inhalte:	Einführung in die Physik, Chemie und Technologie der		
	nichtkonventionellen Energiewandlung und -speicherung unter		
	besonderer Berücksichtigung solarenergiebezogener Technologien.		
	Energiekonversion: Solarenergie → Elektriztät, Wärme, Wasserstoff, und		
	Biomasse; Brennstoffzellen		
	Energiespeicherung: Wasserstoffspeicherung, CO2 -Fixierung,		
	elektrochemische Energiespeicherung		
Typische Fachliteratur:	· · ·		
	A. Wokaun: Erneuerbare Energien, Teubner-Studienbücher		
Lehrformen:	S1 (WS): Vorlesung (4 SWS)		
	S1 (WS): Übung (2 SWS)		
Voraussetzungen für	Empfohlen:		
die Teilnahme:	Physik für Naturwissenschaftler II, 2014-06-02		
	Physik für Naturwissenschaftler I, 2014-06-02		
	Allgemeine, Anorganische und Organische Chemie, 2009-09-02		
Turnus:	jährlich im Wintersemester		
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen		
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:		
Leistungspunkten:	KA [60 bis 120 min]		
Leistungspunkte:	6		
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)		
	Prüfungsleistung(en):		
	KA [w: 1]		
Arbeitsaufwand:	Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 90h		
	Präsenzzeit und 90h Selbststudium. Letzteres umfasst die Vor- und		
	Nachbereitung der LV und die Prüfungsvorbereitung.		
	Nachbereitung der LV und die Prüfungsvorbereitung.		

Daten:	ENZ. MA. Nr. 3157 Stand: 07.03.2010 📜 Start: WiSe 2010		
Modulname:	Enzyme: Reinigung, Charakterisierung, Mechanismen		
(englisch):	Enzymes: Purification, Characterization, Mechanisms		
Verantwortlich(e):	Schlömann, Michael / Prof. Dr.		
Dozent(en):	Schlömann, Michael / Prof. Dr.		
	Kaschabek, Stefan / Dr.		
Institut(e):	Institut für Biowissenschaften		
Dauer:	1 Semester		
Qualifikationsziele /	Nach Abschluss des Moduls sollen die Studierenden ein Protein mit einer		
Kompetenzen:	Kombination aus verschiedenen chromatographischen Methoden		
	reinigen können. Sie sollen elektrophoretische Methoden zur Analyse der		
	Homogenität von Proteinpräparationen wie auch zur Charakterisierung		
	anwenden können. Die Studierenden erwerben die Fähigkeit, kinetische		
	Parameter von Enzymen zu bestimmen. Sie entwickeln ein Verständnis		
	zur Funktion verschiedener Enzyme auf molekularem Niveau.		
Inhalte:	Messung von Enzymaktivitäten, Protein-Chromatographie		
	(Ionenaustausch-Chromatographie, Gelfiltration, Hydrophobe		
	Interaktions-Chromatographie), Protein-Elektrophorese (SDS, Gradienten-		
	Gel-Elektrophorese).		
	Grundlagen der Enzymkatalyse, Enzymkinetik (Michaelis-Menten,		
	einfache Hemmtypen), Enzym-Nomenklatur, Mechanismen		
	hydrolytischer Enzyme (Proteasen, Esterasen, Lysozym), Struktur und		
	Funktion von Dehydrogenasen und Oxygenasen, Wirkungsweise		
	verschiedener Coenzyme, katalytische Antikörper, katalytische RNA.		
Typische Fachliteratur:	J. M. Berg, L. Stryer, J. L. Tymoczko, Stryer Biochemie, Spektrum		
	Akademischer Verlag; D. Nelson, & M. Cox, Lehninger Biochemie,		
	Springer; H. R. Horton, L. A. Moran, K. G. Scrimgeour, M. D. Perry, J. D.		
	Rawn, Biochemie, Pearson Studium		
Lehrformen:	S1 (WS): Vorlesung (1 SWS)		
	S1 (WS): Praktikum (3 SWS)		
Voraussetzungen für	Empfohlen:		
die Teilnahme:	Bachelor-Abschluss in Chemie, Biologie, Angewandter		
	Naturwissenschaft, Geoökologie o. ä. Erfahrungen und Kenntnisse aus		
	einem mikrobiologischen und/oder biochemischen Laborpraktikum		
Turnus:	jährlich im Wintersemester		
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen		
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:		
Leistungspunkten:	MP [20 bis 40 min]		
	PVL: Testierte Protokolle zu den Praktikumsversuchen		
	PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden.		
Leistungspunkte:	4		
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)		
	Prüfungsleistung(en):		
	MP [w: 1]		
Arbeitsaufwand:	Der Zeitaufwand beträgt 120h. Die Präsenzzeit umfasst die Vorlesungen		
	und Laborpraktika. Das Selbststudium umfasst die Vorbereitung für die		
	Versuche, die Anfertigung von Versuchsprotokollen sowie das		
	nachbereiten der Vorlesung und die Vorbereitung auf die mündliche		
	Prüfungsleistung.		

Daten:	PYCH2. BA. Nr. 148 Stand: 25.01.2015 📜 Start: WiSe 2013	
Modulname:	Experimentelle Physikalische Chemie	
(englisch):	Experimental Physical Chemistry	
Verantwortlich(e):	Hüttl, Regina / Dr.	
Dozent(en):	Mertens, Florian / Prof. Dr.	
, ,	Hüttl. Regina / Dr.	
Institut(e):	Institut für Physikalische Chemie	
Dauer:	2 Semester	
Qualifikationsziele /	Die Studierenden erlernen die Grundlagen der	
Kompetenzen:	Mischphasenthermodynamik, der heterogenen Gleichgewichte und der Elektrochemie. Sie beherrschen die grundlegenden physikalischchemischen Messstrategien sowohl für thermodynamische, kinetische als auch elektrochemische Fragestellungen.	
Inhalte:	 Chemische und Mischphasenthermodynamik: Reaktionsgleichgewichte, Phasengleichgewichte reiner Stoffe und von Mischphasen, part. molare Größen, Exzessgrößen, Phasendiagramme, Berechnung komplexer Gleichgewichte idealer und realer Mischphasen. Elektrochemie: Elektrolyttheorie, elektrische Leitfähigkeit, Kohlrausch-Gesetz, Ostwald-Verdünnungsgesetz, Debye-Hückel-Theorie, elektrochem. Gleichgewichte, elektrochem. Zellen, elektrochem. Potential, thermodynamische Daten aus Zellspannungsmessungen, Primär-, Sekundär- und Brennstoffzellen, Elektrodenpotential, Nernst-Gleichung, Dynamische Elektrochemie, Faraday-Gesetze, elektrochem. Doppelschicht, Stromdichte, Polarisation u. Überspannung, Korrosion, Elektrolyse. Praktikum (Teil 1: Grundpraktikum zur chemischen Thermodynamik; Teil 2: Grundpraktikum zu Phasengleichgewichten, zur chemischen Kinetik und zur 	
	Elektrochemie).	
Typische Fachliteratur:	P. W. Atkins: Physikalische Chemie, Wiley-VCH; G. Wedler: Lehrbuch der Physikalischen Chemie, Wiley-VCH, K. H. Hamann, W. Vielstich: Elektrochemie, Wiley-VCH.	
Lehrformen:	S1 (WS): Vorlesung (2 SWS) S1 (WS): Übung (1 SWS) S1 (WS): Praktikum (2 SWS) S2 (SS): Praktikum (5 SWS)	
Voraussetzungen für	Empfohlen:	
die Teilnahme:	Chemische Thermodynamik und Kinetik, 2012-06-06	
Turnus:	jährlich im Wintersemester	
Voraussetzungen für die Vergabe von Leistungspunkten:	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: in Prüfungsvariante 1: MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPPC. [45 bis 60 min] PVL: Praktika Teil 1 und 2 inklusive mündliches Abtestat PVL: Schriftliches Abtestat [60 min] oder	
	in Prüfungsvariante 2: KA* [90 min] MP*: Prüfung zum Praktikum [30 min] AP*: Praktikum Teil 1 AP*: Praktikum Teil 2 PVL: Übungsaufgaben	

	Prüfungsvariante 1: Für Studierende des Diplomstudienganges Chemie. Prüfungsvariante 2: Für Studierende aller Studiengänge außer dem Diplomstudiengang Chemie. PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden. * Bei Modulen mit mehreren Prüfungsleistungen muss diese
	Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein.
Leistungspunkte:	9
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): in Prüfungsvariante 1:
	MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPPC. [w: 1] oder
	in Prüfungsvariante 2:
	KA* [w: 3]
	MP*: Prüfung zum Praktikum [w: 4]
	AP*: Praktikum Teil 1 [w: 1]
	AP*: Praktikum Teil 2 [w: 2]
	* Bei Modulen mit mehreren Prüfungsleistungen muss diese
	Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0)
	bewertet sein.
Arbeitsaufwand:	Der Zeitaufwand beträgt 270h und setzt sich zusammen aus 150h
	Präsenzzeit und 120h Selbststudium. Letzteres umfasst die Vor- und
	Nachbereitung der Lehrveranstaltung, insb. die Erarbeitung der
	Protokolle für die Praktika, sowie die Prüfungsvorbereitung.

Daten:	ACF. MA. Nr. 3513 Stand: 13.05.2015 🔁	Start: WiSe 2015	
Modulname:	Fortgeschrittene Analytische Chemie		
(englisch):	Advanced Analytical Chemistry		
Verantwortlich(e):	Otto, Matthias / Prof. Dr.		
	<u>Mertens, Florian / Prof. Dr.</u>		
Dozent(en):	Otto, Matthias / Prof. Dr.		
	<u>Mertens, Florian / Prof. Dr.</u>		
	<u>Brendler, Erica / Dr.</u>		
Institut(e):	Institut für Analytische Chemie		
	Institut für Physikalische Chemie		
Dauer:	2 Semester		
Qualifikationsziele /	Kopplungsmethoden in der Analytischen Chemie		
Kompetenzen:	· · · · · · · · · · · · · · · · · · ·		
	Methoden und Trennverfahren sowie ihrer Kopplur	ng zur Spuren- und	
	Vielkomponentenanalyse.		
	Methoden der Bestimmung von Struktur- und Stoff	feigenschaften	
	Die Studierenden erlangen vertiefte Kenntnisse in	der Anwendung	
	ausgewählter spektroskopischer Methoden, der NN	MR-Spektroskopie	
	sowie thermoanalytischer Messverfahren.		
Inhalte:	Kopplungsmethoden in der Analytischen Chemie		
	Kopplungen von analytischen Trennmethod	den mit der	
	Spektroskopie (GC mit MS, IR, AES; LC mit	MS, UV/VIS, IR, AES,	
	NMR Elektrophorese mit MS und optischer	Spektrometrie),	
	Kopplungen von Methoden untereinander ((komprehensive GC	
	und LC, GC×LC SFC×GC, MSn, 2D-IR),		
	 bildgebende Analysenmethoden (elementa 	ar, molekular).	
	Methoden der Bestimmung von Struktur- und Stoff	feigenschaften	
	Spektroskopische Methoden: Methoden der	r ontischen	
	Spektroskopie, Anregungsbedingungen und	-	
	Rotationsspektren, Schwingungsspektren,	=	
	Mössbauerspektroskopie, Photoelektronens		
	Ausgewählte Probleme bei XRD: Spezielle	•	
	Röntgendiffraktometrie.	memen dei	
	Thermoanalytische Methoden: Thermodeso	orntionsspektroskopie	
	Thermogravimetrie, Kalorimetrie.	этрионзэрски озкоріс,	
	NMR: Relaxationsprozesse, NOE, Polarisation	onstransfer	
	Entkopplungstechniken, Editieren von Spel	-	
	Prozesse, Mehrdimensionale NMR, Gradien		
	Grundlagen Festköper- NMR	recrispenti osnopie,	
Typische Fachliteratur:	M. Otto: Analytische Chemie, Wiley-VCH; R. Kellne	r I-M Mermet M	
l ypiserie i deimeerdeur.	Otto, M. Valcárcel, M. Widmer: Analytical Chemistr	_	
	P. W. Atkins: Physikalische Chemie, Wiley-VCH.	y, which veri.	
	W. Schmidt: Optische Spektroskopie, Wiley-VCH.		
	Günzler/Heise: IR-Spektroskopie, Wiley-VCH.		
	H. Friebolin: Ein- und zweidimensionale NMR-Spekt	troskonie VCH	
	H. Günther: NMR-Spektroskopie, Thieme.	a conopie, veri	
Lehrformen:	S1 (WS): Kopplungsmethoden in der Analytischen	Chemie / Vorlesung (2	
	SWS)	channe, volicouring (2	
	S2 (SS): Kopplungsmethoden in der Analytischen (Chemie / Praktikum (3	
	SWS)	S. Sime , Francikam (5	
	S1 (WS): Methoden der Bestimmung von Struktur-	und	
I	P1 (113): Methoden der bestimmung von Struktur-	4114	

Voraussetzungen für	Stoffeigenschaften / Vorlesung (2 SWS) S2 (SS): Methoden der Bestimmung von Struktur- und Stoffeigenschaften / Praktikum (3 SWS) Abschluss aller Komplexprüfungen	
die Teilnahme:	Empfohlen:	
	Analytische Chemie – Grundlagen, 2012-06-27 Instrumentelle Analytische Chemie, 2012-06-27	
Turnus:	jährlich im Wintersemester	
Voraussetzungen für die Vergabe von Leistungspunkten:	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: MP [45 bis 60 min] PVL: Belegarbeit (zu Kopplungsmethoden in der Analytischen Chemie) PVL: Seminarvortrag, Übungsaufgaben, Belegarbeit (zu Methoden der Bestimmung v. Struktur- und Stoffeigenschaften) PVL: Schriftliches Abtestat [90 min] PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden.	
Leistungspunkte:	12	
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): MP [w: 1]	
Arbeitsaufwand:	Der Zeitaufwand beträgt 360h und setzt sich zusammen aus 150h Präsenzzeit und 210h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltungen, die schriftliche Ausarbeitung sowie die Vorbereitung auf die Prüfungsleistung.	

Daten:	AnorCF. MA. Nr. 3516 Stand: 13.05.2015 📜 Start: SoSe 2015
Modulname:	Fortgeschrittene Anorganische Chemie
(englisch):	Advanced Inorganic Chemistry
Verantwortlich(e):	Kroke, Edwin / Prof. Dr.
	<u>Frisch, Gero / Prof. Dr.</u>
Dozent(en):	Kroke, Edwin / Prof. Dr.
	Böhme, Uwe / PD Dr. rer. nat. habil.
	<u>Freyer, Daniela / Dr.</u>
	Schwarz, Marcus / Dr.
	<u>Frisch, Gero / Prof. Dr.</u>
Institut(e):	Institut für Anorganische Chemie
Dauer:	2 Semester
Qualifikationsziele /	Fortgeschrittene Anorganische Molekülchemie
Kompetenzen:	Die Studierenden sollen einen tieferen Einblick in wichtige und aktuelle Bereiche der Anorganischen Chemie erlangen. Es werden Kompetenzen zu den Themen "Anorganische Reaktionsmechanismen", "Syntheseprinzipien", "Theoretische Anorganische Molekülchemie" und "Bioanorganische Chemie" vermittelt.
	Anorganische Festkörper- und Materialchemie
	Nach Abschluss des Moduls sind die Studierenden in der Lage
	 einfache Kristallstrukturen zu bestimmen, kristallografisch zu beschreiben und Eigenschaften daraus abzuleiten,
	Festkörpersynthesen zu planen und durchzuführen,
	 den Erfolg der Synthese, sowie spezifische Eigenschaften durch
	entsprechende physikalisch-chemische
	Charakterisierungsmethoden zu überprüfen.
	enarakteristerangsmetrioden zu aberpratem
Inhalte:	Fortgeschrittene Anorganische Molekülchemie
	 Reaktionsmechanismen: Aktivierungsparameter,
	Substitutionsreaktionen an tetraedrischen & planaren
	Komplexen, trans-Effekt, oktaedrische Komplexe, oxidative
	Addition & reduktive Eliminierung, Elektronentransferreaktionen, Insertionen.
	 Theorie: Symmetriekonzepte, Extended-Hückel-Methode, quantenmechanische Methoden, Spektren-Berechnung (IR, Raman, UV/Vis, NMR).
	 Bioanorganische Chemie: Grundlagen; Cobalamine; Photosynthese; O₂-Transport; Hämoproteine; Fe-S-Proteine; Fe-Transport; Ni-Enzyme; Cu-Proteine; biologische Funktion von Mo, W, V & Cr; Zn-Enzyme; Alkali- und Erdalkalimetalle; Biomineralisation; Bedeutung der Nichtmetalle; vorwiegend toxische Metalle (Pb, Cd, Tl, Hg, Al, Be); Chemotherapie mit Au-, Pt- & Li-Verbindungen.
	Anorganische Festkörper- und Materialchemie
	 Röntgenkristallstrukturanalyse am Einkristall und Pulver. Weitere Methoden zur Festkörpercharakterisierung wie Spektroskopie, thermische Analyse, Mikroskopie. Synthesemethoden für Festkörper aus fester, flüssiger und gasförmiger Phase.

	 Synthese und Eigenschaften von Festkörpern unter hohem Druck. Funktionsmaterialien (ausgewählte Fallbeispiele).
Typische Fachliteratur:	J.E. Huheey: Anorganische Chemie; Shriver / Atkins / Langford: Anorganische Chemie; Cotton / Wilkinson: Andvanced Inorganic Chemistry; Kaim / Schwederski: Bioanorganische Chemie. Reinhold: Quantentheorie der Moleküle. L. E. Smart, E. A. Moore "Solid State Chemistry: An Introduction" U. Müller "Anorganische Strukturchemie" W. Borchardt-Ott "Kristallographie" W. Massa "Kristallstrukturbestimmung"
Lehrformen:	S1 (SS): Fortgeschrittene Anorganische Molekülchemie / Vorlesung (3 SWS) S1 (SS): Fortgeschrittene Anorganische Molekülchemie / Übung (1 SWS) S1 (SS): Fortgeschrittene Anorganische Molekülchemie / Praktikum (2 SWS)
	S1 (SS): Anorganische Festkörper- und Materialchemie / Vorlesung (3 SWS) S2 (WS): Anorganische Festkörper- und Materialchemie / Übung (1 SWS) S2 (WS): Anorganische Festkörper- und Materialchemie / Praktikum (2 SWS)
Voraussetzungen für	Abschluss aller Komplexprüfungen
die Teilnahme:	Empfohlen: Theoretische Physikalische Chemie, 2009-07-01 Allgemeine, Anorganische und Organische Chemie für Chemiker, 2012-06-30 Anorganische Chemie der Hauptgruppenelemente, 2012-07-02 Anorganische Chemie der Nebengruppenelemente, 2012-07-26 Chemische Thermodynamik und Kinetik, 2012-06-06 Experimentelle Physikalische Chemie, 2012-07-02
Turnus:	jährlich im Sommersemester
Voraussetzungen für die Vergabe von Leistungspunkten:	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: MP [45 bis 60 min]
	PVL: Übungs- und Praktikumsaufgaben PVL: Seminarvortrag PVL: Schriftliches Abtestat zur Fortgeschrittenen Anorganischen Molekülchemie [90 min] PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden.
Leistungspunkte:	12
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): MP [w: 1]
Arbeitsaufwand:	Der Zeitaufwand beträgt 360h und setzt sich zusammen aus 180h Präsenzzeit und 180h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltung, sowie die Vorbereitung auf die Testate,den Vortrag und die Prüfung.

Daten:	FOC. MA. Nr. 3512 Stand: 13.05.2015 📜 Start: WiSe 2016
Modulname:	Fortgeschrittene Organische Chemie
(englisch):	Advanced Organic Chemistry
Verantwortlich(e):	Mazik, Monika / Prof. Dr.
	Schüürmann, Gerrit / Prof. Dr.
Dozent(en):	Mazik, Monika / Prof. Dr.
	Pollex, Rolf / Dr.
	Seichter, Wilhelm / Dr.
	Schüürmann, Gerrit / Prof. Dr.
Institut(e):	Institut für Organische Chemie
Dauer:	2 Semester
Qualifikationsziele /	Prinzipien der organischen Synthese
Kompetenzen:	Die Studierenden erlernen in Grundzügen moderne Strategien zur
	Durchführung von organischen Stoffsynthesen. Sie werden in der Lage
	sein, Synthesewege für Verbindungen mäßigen Schwierigkeitsgrades
	eigenständig zu entwickeln, und die grundlegenden Prinzipien der
	supramolekularen Synthese beherrschen.
	Theoretische Konzepte der Molekül- und Elektronenstruktur chemischer
	<u>Verbindungen</u>
	Die Studierenden verfügen über Grundkenntnisse der Stereochemie von
	Molekülen und der Prinzipien zur Gewinnung von Stereoisomeren. Sie
	können theoretische Modelle zur Analyse der Molekülreaktivität
	anwenden und kennen qualitative und quantitative Methoden der
	Theoretischen Chemie zur Charakterisierung der Elektronenstruktur von
	Molekülen.
Inhalte:	Prinzipien der organischen Synthese
	Problematik der chemischen Synthese von Verbindungen mit komplexer
	Molekülstruktur, Grundzüge der Retrosynthese, Selektivitätsprinzip
	chemischer Reaktionen (Chemo-, Regio- und Stereoselektivität),
	Grundlagen der Schutzgruppenchemie; Einführung in die
	supramolekulare Synthese. Forschungsorientierte Syntheseaufgabe
	(experimentelle Stoffpräparation).
	Theoretische Konzepte der Molekül- und Elektronenstruktur chemischer
	<u>Verbindungen</u>
	1. Stereochemie: Stereoisomerie, Molekülsymmetrie, Chiralität,
	Stereo-Nomenklatur, Enantiomerenzuordnung und
	Enantiomerentrennung, Grundlagen der asymmetrischen
	Synthese.
	2. Struktur und Reaktivität organischer Moleküle: Born-
	Oppenheimer Näherung, Virialsatz, Molekulare Energieniveaus
	(elektronische Übergänge, Rotation, Vibration),
	Nullpunktsschwingung, Reaktionskoordinate,
	Orbitalwechselwirkung, Orbitalkontrolle vs. Ladungskontrolle,
	pericyclische Reaktionen (Cycloaddition, elektrocyclische
	Reaktion, sigmatrope Umlagerung, Gruppentransfer-Reaktion),
	Hammett-Gleichung.
	3. Theoretische Chemie: Orbitalnäherung, Atomorbitale (Radial-
	und Winkelanteil), Orbitale für Mehrelektronenwellenfunktionen
	(Hartree-Produkt, Slater-Orbitale, Variationsprinzip, Gauß-
	Orbitale, Basissätze), LCAO-MO-Methode für Molekülorbitale,
	Säkulargleichungen, Beispiel H ₂ , physikalsche Natur der
	kovalenten Bindung, MO vs. VB (Valence Bond), Mehrelektronen-
	Wellenfunktionen, Elektronenspin, Permutationssymmetrie,
	Slaterdeterminante, Hartree-Fock-Theorie (HF-SCF).

Tuningha Faghlitanatum	C. Warran, The Chrotogy of Organic Symbolic Wiley VCII.
ypische Fachilteratur:	S. Warren: The Strategy of Organic Synthesis, Wiley-VCH;
	M. A. Fox, J. K. Whitesell: Organische Chemie, Spektrum Akademischer
	Verlag;
	F. Vögtle: Supramolekulare Chemie, Teubner-Studienbücher;
	J. W. Steed, J. L. Atwood: Supramolecular Chemistry, Wiley
	KH. Hellwich: Stereochemie - Grundbegriffe, Springer;
	S. Hauptmann, G. Mann: Stereochemie, Spektrum Akademischer Verlag;
	E. V. Anslyn, D. A. Doherty: Modern Physical Organic Chemistry,
	University Science Books 2006;
	I. Fleming: Pericyclic Reactions, Oxford University Press 1999;
	I. Fleming: Molecular Orbitals and Organic Chemical Reactions, Wiley
	2009 (Student Edition) & 2010 (Reference Edition);
	I.N. Levine: Quantum Chemistry, 5 th Ed., Prentice Hall 2000; C.J. Cramer:
	Essentials of Computational Chemistry, 2 nd Ed., Wiley 2004;
	F. Jensen: Introduction to Computational Chemistry, 2 nd Ed., Wiley 2007;
	E. Lewars: Computational Chemistry, 2 nd Ed., Springer 2011.
Lehrformen:	\$1 (WS): Prinzipien der organischen Synthese / Vorlesung (2 SWS)
Lemioniem	S1 (WS): Prinzipien der organischen Synthese / Praktikum (3 SWS)
	\$1 (WS): Theoretische Konzepte der Molekül- und Elektronenstruktur
	chemischer Verbindungen / Vorlesung (2 SWS)
	1
	S2 (SS): Theoretische Konzepte der Molekül- und Elektronenstruktur
Vorgues et aungen für	chemischer Verbindungen / Vorlesung (2 SWS)
Voraussetzungen für	Abschluss aller Komplexprüfungen
die Teilnahme:	Empfohlen:
	Spezielle Reaktionen und Mechanismen der Organischen Chemie,
	2015-01-25
	Organische Chemie spezieller Stoffklassen, 2015-01-25
	Theoretische Physikalische Chemie, 2015-01-25
	Höhere Mathematik I für naturwissenschaftliche Studiengänge,
	<u>2014-06-01</u>
	Höhere Mathematik II für naturwissenschaftliche Studiengänge,
	<u>2014-06-01</u>
	Quantentheorie I, 2009-09-29
	Erweiterte Grundlagenkenntnisse in anorganischer, organischer und
	physikalischer Chemie.
Turnus:	jährlich im Wintersemester
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:
Leistungspunkten:	MP [45 bis 60 min]
	PVL: Belegarbeit über die Ergebnisse der Praktikumsaufgaben
	PVL: Schriftliches Abtestat [90 min]
	PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden.
Leistungspunkte:	12
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)
	Prüfungsleistung(en):
	MP [w: 1]
Arbeitsaufwand:	Der Zeitaufwand beträgt 360h und setzt sich zusammen aus 135h
	Präsenzzeit und 225h Selbststudium. Letzteres umfasst Vor- und
	Nachbereitung der Lehrveranstaltung sowie Prüfungsvorbereitung.
	, , , , , , , , , , , , , , , , , , , ,

Daten:	FPHC. MA. Nr. 3515 Stand: 13.05.2015 Start: SoSe 2015
Modulname:	Fortgeschrittene Physikalische Chemie
(englisch):	Advanced Physical Chemistry
Verantwortlich(e):	<u>Mertens, Florian / Prof. Dr.</u>
Dozent(en):	Bertau, Martin / Prof. Dr.
	Mertens, Florian / Prof. Dr.
	<u>Mögel, Hans-Jörg / Prof. Dr.</u>
	<u>Schiller, Peter / PD Dr. rer. nat. habil.</u>
Institut(e):	Institut für Technische Chemie
	Institut für Physikalische Chemie
Dauer:	1 Semester
Qualifikationsziele /	Grenzflächen und Kolloide
Kompetenzen:	Vermittlung von Grundkenntnissen über Eigenschaften von
	Grenzflächen, Kolloiden und Polymerlösungen und Befähigung zur
	Anwendung von Grundkonzepten zur Lösung praktischer Probleme
	Kinetik und Katalyse
	Die Studierenden sollen die wichtigsten Konzepte der heterogenen,
	homogenen und biochemischen Katalyse unter Einbeziehung
	experimenteller Untersuchungsmethoden beherrschen und sie von den
	diskutierten Beispielreaktionen auf andere technisch relevante Systeme
	übertragenen können.
Inhalte:	Grenzflächen und Kolloide
	Grenzflächen: Thermodynamik von Grenzflächen, Oberflächenspannung,
	Randwinkel, Adsorption, Tenside, Kapilllarkondensation, dünne Filme,
	elektrisch geladene Grenzflächen
	Kolloide: Herstellung, Eigenschaften, experimentelle Charakterisierung
	und Anwendungen von Dispersionskolloiden (Sole, Gele, Emulsionen,
	Schäume) und Assoziationskolloiden, DLVO-Theorie, Lichtstreuung
	Rheologie, elektrische, akustische Messverfahren, hydrophober Effekt,
	Micellbildung, lyotrope Flüssigkristalle, Mikroemulsionen, Biomembranen
	Polymerlösungen: Einzelmoleküle, Polymerlösungstypen, Flory-Huggins-
	Theorie, Thermodynamik der Polymerlösungen, Struktur und Dynamik
	von Polymergelen
	Kin atila and Katalana
	Kinetik und Katalyse
	Grundlagen der Katalysatorbeschreibung:
	- Icabali thia albam Zuldua
	katalytischer Zyklus Flamentarschritte
	Elementarschritte avparimentalle Untersuchungsmethoden und Aufklärung
	experimentelle Untersuchungsmethoden und Aufklärung katalytischer Mechanismen
	katalytischer Mechanismen
	Grundlagen der heterogenen Katalyse:
	Grundlagen der neterogenen Katalyse.
	Adsorptionsmodelle
	Oberflächenmodifikationen
	Struktur-Reaktivitätsbeziehung bei Metall- und
	Nichtmetallkatalysatoren
	Aktive Zentren
	Promotoren
	Katalysatorgifte katalysarolovanta Aspokta dar Fastkärnarshamia
	 katalyserelevante Aspekte der Festkörperchemie Vulkankurve
1	Einkristall-Modellkatalyse

	RealkatalysatorenBeispielreaktionen
	• Beispielleaktionen
	Grundlagen der homogenen Katalyse:
	Säure-Base-Katalysenukleophile und elektrophile Katalyse
	Redox-Katalyse
	koordinative Katalyse durch Metallkomplexe
	Aktivierungsmechanismen Stavenung den Salahtivität dunah Linandan sinfluss
	Steuerung der Selektivität durch LigandeneinflussBeispielreaktionen
	Synopse der Funktionsweisen und Einsatzgebiete klassisch-chemischer Katalysatoren und Biokatalysatoren anhand vier ausgewählter, repräsentativer Syntheseprobleme aus der industriellen Chemie und Anwendungsbeispiele
Typische Fachliteratur:	<u> </u>
	Verlag 1993; H. G. Elias, Makromoleküle Bd.2, Wiley-VCH 2001; P. C. Hiemenz, R. Rajagopalan, Principles of Colloid and Surface Chemistry, M. Dekker 1997
	John M. Thomas, W. J. Thomas: Principles and Practice of Heterogeneous Catalysis, Wiley-VCH
	R. Taube: Homogene Katalyse, Akademie Verlag Berlin
	Dirk Steinborn: Grundlagen der metallorganischen Komplexkatalyse,
	Teubner Verlag
	P. van Leeuwen: Homogeneous Catalysis, Kluwer Academic Publisher
	M. Baerns et al.: Lehrbuch der Technischen Chemie, Wiley-VCH
	G. E. Jeromin, M. Bertau: Bioorganikum, Wiley-VCH
Lehrformen:	S1 (SS): Grenzflächen und Kolloide / Vorlesung (3 SWS)
	S1 (SS): Grenzflächen und Kolloide / Praktikum (2 SWS)
	S1 (SS): Kinetik und Katalyse / Vorlesung (3 SWS)
	S1 (SS): Kinetik und Katalyse / Übung (1 SWS)
Voraussetzungen für	S1 (SS): Kinetik und Katalyse / Praktikum (1 SWS) Abschluss aller Komplexprüfungen
die Teilnahme:	· ' ' - ' - ' - ' - ' - ' - ' - ' - ' -
die reiniamme.	FMNTANIAN.
	Empfohlen: Allgemeine Anorganische und Organische Chemie 2009-09-02
	Allgemeine, Anorganische und Organische Chemie, 2009-09-02
Turnus:	- I
Turnus: Voraussetzungen für	Allgemeine, Anorganische und Organische Chemie, 2009-09-02 Grundlagen der Physikalischen Chemie für Ingenieure, 2009-08-11
	Allgemeine, Anorganische und Organische Chemie, 2009-09-02 Grundlagen der Physikalischen Chemie für Ingenieure, 2009-08-11 jährlich im Sommersemester
Voraussetzungen für	Allgemeine, Anorganische und Organische Chemie, 2009-09-02 Grundlagen der Physikalischen Chemie für Ingenieure, 2009-08-11 jährlich im Sommersemester Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: MP [45 bis 60 min]
Voraussetzungen für die Vergabe von	Allgemeine, Anorganische und Organische Chemie, 2009-09-02 Grundlagen der Physikalischen Chemie für Ingenieure, 2009-08-11 jährlich im Sommersemester Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: MP [45 bis 60 min] PVL: Praktika zu Grenzflächen und Kolloide sowie Kinetik und Katalyse
Voraussetzungen für die Vergabe von	Allgemeine, Anorganische und Organische Chemie, 2009-09-02 Grundlagen der Physikalischen Chemie für Ingenieure, 2009-08-11 jährlich im Sommersemester Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: MP [45 bis 60 min] PVL: Praktika zu Grenzflächen und Kolloide sowie Kinetik und Katalyse PVL: Schriftliches Abtestat [90 min]
Voraussetzungen für die Vergabe von	Allgemeine, Anorganische und Organische Chemie, 2009-09-02 Grundlagen der Physikalischen Chemie für Ingenieure, 2009-08-11 jährlich im Sommersemester Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: MP [45 bis 60 min] PVL: Praktika zu Grenzflächen und Kolloide sowie Kinetik und Katalyse PVL: Schriftliches Abtestat [90 min] PVL: Schriftliche Ausarbeitung (Englisch)
Voraussetzungen für die Vergabe von Leistungspunkten:	Allgemeine, Anorganische und Organische Chemie, 2009-09-02 Grundlagen der Physikalischen Chemie für Ingenieure, 2009-08-11 jährlich im Sommersemester Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: MP [45 bis 60 min] PVL: Praktika zu Grenzflächen und Kolloide sowie Kinetik und Katalyse PVL: Schriftliches Abtestat [90 min] PVL: Schriftliche Ausarbeitung (Englisch) PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden.
Voraussetzungen für die Vergabe von Leistungspunkten: Leistungspunkte:	Allgemeine, Anorganische und Organische Chemie, 2009-09-02 Grundlagen der Physikalischen Chemie für Ingenieure, 2009-08-11 jährlich im Sommersemester Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: MP [45 bis 60 min] PVL: Praktika zu Grenzflächen und Kolloide sowie Kinetik und Katalyse PVL: Schriftliches Abtestat [90 min] PVL: Schriftliche Ausarbeitung (Englisch) PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden.
Voraussetzungen für die Vergabe von Leistungspunkten:	Allgemeine, Anorganische und Organische Chemie, 2009-09-02 Grundlagen der Physikalischen Chemie für Ingenieure, 2009-08-11 jährlich im Sommersemester Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: MP [45 bis 60 min] PVL: Praktika zu Grenzflächen und Kolloide sowie Kinetik und Katalyse PVL: Schriftliches Abtestat [90 min] PVL: Schriftliche Ausarbeitung (Englisch) PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden. 12 Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)
Voraussetzungen für die Vergabe von Leistungspunkten: Leistungspunkte:	Allgemeine, Anorganische und Organische Chemie, 2009-09-02 Grundlagen der Physikalischen Chemie für Ingenieure, 2009-08-11 jährlich im Sommersemester Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: MP [45 bis 60 min] PVL: Praktika zu Grenzflächen und Kolloide sowie Kinetik und Katalyse PVL: Schriftliches Abtestat [90 min] PVL: Schriftliche Ausarbeitung (Englisch) PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden. 12 Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en):
Voraussetzungen für die Vergabe von Leistungspunkten: Leistungspunkte: Note:	Allgemeine, Anorganische und Organische Chemie, 2009-09-02 Grundlagen der Physikalischen Chemie für Ingenieure, 2009-08-11 jährlich im Sommersemester Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: MP [45 bis 60 min] PVL: Praktika zu Grenzflächen und Kolloide sowie Kinetik und Katalyse PVL: Schriftliches Abtestat [90 min] PVL: Schriftliche Ausarbeitung (Englisch) PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden. 12 Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): MP [w: 1]
Voraussetzungen für die Vergabe von Leistungspunkten: Leistungspunkte:	Allgemeine, Anorganische und Organische Chemie, 2009-09-02 Grundlagen der Physikalischen Chemie für Ingenieure, 2009-08-11 jährlich im Sommersemester Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: MP [45 bis 60 min] PVL: Praktika zu Grenzflächen und Kolloide sowie Kinetik und Katalyse PVL: Schriftliches Abtestat [90 min] PVL: Schriftliche Ausarbeitung (Englisch) PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden. 12 Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en):
Voraussetzungen für die Vergabe von Leistungspunkten: Leistungspunkte: Note:	Allgemeine, Anorganische und Organische Chemie, 2009-09-02 Grundlagen der Physikalischen Chemie für Ingenieure, 2009-08-11 jährlich im Sommersemester Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: MP [45 bis 60 min] PVL: Praktika zu Grenzflächen und Kolloide sowie Kinetik und Katalyse PVL: Schriftliches Abtestat [90 min] PVL: Schriftliche Ausarbeitung (Englisch) PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden. 12 Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): MP [w: 1] Der Zeitaufwand beträgt 360h und setzt sich zusammen aus 150h

Daten:	TNCH. MA. Nr. 3514 Stand: 13.05.2015 Start: WiSe 2015
Modulname:	Fortgeschrittene Technische Chemie
(englisch):	Advanced Technical Chemistry
Verantwortlich(e):	Bertau, Martin / Prof. Dr.
Dozent(en):	Bertau, Martin / Prof. Dr.
	Müller, Armin / Prof. Dr.
	<u>Pätzold, Carsten / Dr.</u>
Institut(e):	Institut für Technische Chemie
Dauer:	2 Semester
Qualifikationsziele /	Industrielle Chemie
Kompetenzen:	Die Studierenden sollen Kenntnisse über die technische Realisierung von
	chemischen Umsetzungen und deren Einbindung in die industrielle
	Synthese von Zwischenprodukten erhalten.
	Industrielle Chemie der Zwischen- und Endprodukte
	Der Studierende soll Kenntnisse über die technische Realisierung von
	anspruchsvollen chemischen Umsetzungen und deren Einbindung in die
	industrielle Synthese von Zwischen- und Endprodukten erhalten sowie
	Einblick aktuelle Entwicklungen in modernen chemischen
	Produktionsprozessen.
Inhalte:	Industrielle Chemie
	Anorganisch-technische, organisch-technische und biotechnologische
	Verfahren in der industriellen Chemie.
	Anorganische Produkte: Düngemittel, Ammoniak, Salpetersäure,
	elektrochemisch gewonnene Produkte (NaOH, Cl ₂ , Al), SiO ₂ , TiO ₂ , Metalle
	(Fe, Stahl, Mg, Zu, Cu), Baustoffe und Silikatkeramik. Organische
	Produkte: Erdöl (Gewinnung, Aufbereitung), Olefine, Aromaten und
	Folgeprodukte, Polymere, Chemiefasern.
	Industrielle Chemie der Zwischen- und Endprodukte
	Anspruchsvolle anorganisch-, organisch-technische und
	biotechnologische Herstellung von Zwischen- und Endprodukten:
	Silicium, Organosiliciumverbindungen, Anorg. und Org. Chemiefasern,
	Verbundwerkstoffe, Biotechnologische Synthese von Feinchemikalien,
	Nachwachsende Rohstoffe/Bioraffinerie, Biodiesel, Fette und Öle,
	Mikroreaktionstechnik, Tenside, Farbstoffe, Pharmaka,
	Pflanzenschutzmittel, Zeolithe, metallorganische Verbindungen.
Typische Fachliteratur:	K. H. Büchel, HH. Moretto, P. Woditsch: Industrielle Anorganische
	Chemie, Wiley-VCH;
	HJ. Arpe: Industrielle Organische Chemie, Wiley-VCH;
	M. Baerns et al.: Lehrbuch der Technischen Chemie, Wiley-VCH;
	E. Jeromin, M. Bertau: Bioorganikum, Wiley-VCH; A. Liese et al.:
	Industrial Biotransformations, Wiley-VCH.
Lehrformen:	S1 (WS): Grundlagen der Industriellen Chemie / Vorlesung (1 SWS)
	S1 (WS): Industrielle Chemie / Übung (1 SWS)
	S1 (WS): Industrielle Chemie / Praktikum (3 SWS)
	S1 (WS): Industrielle Chemie - 1 Woche / Exkursion (2 SWS)
	\$1 (WS): Industrielle Chemie der Zwischen- und Endprodukte / Vorlesung
	(3 SWS)
	S2 (SS): Industrielle Chemie der Zwischen- und Endprodukte / Praktikum
	(4 SWS)
Voraussetzungen für	Abschluss aller Komplexprüfungen
die Teilnahme:	
Turnus:	jährlich im Wintersemester
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen

die Vergabe von Leistungspunkten:	der Modulprüfung. Die Modulprüfung umfasst: MP [45 bis 60 min] PVL: Übungsaufgaben mit Diskussionsbeiträgen PVL: Praktika zu Industrieller Chemie sowie Industrieller Chemie der Zwischen- und Endprodukte PVL: Teilnahme an der Exkursion PVL: Schriftliches Abtestat [90 min] PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden.
Leistungspunkte:	12
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): MP [w: 1]
Arbeitsaufwand:	Der Zeitaufwand beträgt 360h und setzt sich zusammen aus 210h Präsenzzeit und 150h Selbststudium. Das Selbststudium umfasst die Vor- und Nachbereitung der Lehrveranstaltung sowie die Prüfungsvorbereitung.

Daten:	BCMIK. BA. Nr. 149 Stand: 25.09.2009 🔁 Start: SoSe 2010
Modulname:	Grundlagen der Biochemie und Mikrobiologie
(englisch):	Fundamentals of Biochemistry and Microbiology
Verantwortlich(e):	<u>Schlömann, Michael / Prof. Dr.</u>
Dozent(en):	<u>Schlömann, Michael / Prof. Dr.</u>
Institut(e):	Institut für Biowissenschaften
Dauer:	1 Semester
Qualifikationsziele /	Die Studierenden sollen die wichtigsten Klassen von Biomolekülen und
Kompetenzen:	die grundlegenden Prozesse in der Zelle verstanden haben. Sie sollen
	wichtige Methoden zur Untersuchung von Biomolekülen und
	Mikroorganismen kennen, einen Überblick über die Typen mikrobiellen
	Energiestoffwechsels haben und daraus die Bedeutung von
	Mikroorganismen in verschiedenen Umweltkompartimenten ableiten
	können.
Inhalte:	Bau von eukaryotischer und prokaryotischer Zelle
	Struktur und Funktion von Biomolekülen:
	 Kohlenhydrate, Lipide, Aminosäuren, Proteine,
	Nucleotide, Nucleinsäuren, Elektrophorese, DNA-
	Replikation, Schädigung und Reparatur von DNA, DNA-
	Rekombination und -Übertragung, Transkription,
	Prozessierung von RNA, Translation, Protein-Targeting
	Anreicherung, Isolierung sowie klassische und phylogenetische
	Klassifizierung und Identifizierung von Mikroorganismen
	Wachstum von Mikroorganismen, steriles Arbeiten
	Prinzipien des Energiestoffwechsels
	Aerobe Energiegewinnung am Beispiel des Kohlenhydrat-Abbaus
	Gärungen
	Prinzipien des Abbaus anderer Naturstoffe
	 Photosynthese und CO₂-Fixierung
	Mikroorganismen im N-, S- und Fe-Kreislauf
Typische Fachliteratur:	D. Nelson, M. Cox: Lehninger Biochemie, Springer; J. M. Berg, J. L.
''	Tymoczko, L. Stryer: Biochemie, Spektrum Akademischer Verlag; H. R.
	Horton, L. A. Moran, K. G. Scrimgeour, M. D. Perry, J. D. Rawn:
	Biochemie, Pearson Studium; M. T. Madigan, J. M. Martinko: Brock
	Mikrobiologie, Pearson Studium H. Cypionka: Grundlagen der
	Mikrobiologie, Springer; K. Munk: Mikrobiologie, Spektrum Akademischer
	Verlag; G. Fuchs: Allgemeine Mikrobiologie, Thieme.
Lehrformen:	S1 (SS): Vorlesung (3 SWS)
	S1 (SS): Praktikum (1 SWS)
Voraussetzungen für	Empfohlen:
die Teilnahme:	Allgemeine, Anorganische und Organische Chemie, 2009-09-02
	Biologie-Kenntnisse der gymnasialen Oberstufe
Turnus:	jährlich im Sommersemester
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:
Leistungspunkten:	KA [90 min]
	PVL: Praktikum einschließlich Protokolle
	PVL: Kurzprüfungen zu den Praktika [10 min]
	PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden.
Leistungspunkte:	6
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)
	Prüfungsleistung(en):
	KA [w: 1]
Arbeitsaufwand:	Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 60h

Präsenzzeit und 120h Selbststudium. Letzteres umfasst sowohl die Vorund Nachbereitung der Lehrveranstaltungen anhand von Übungsfragen, als auch die Vorbereitung auf die Klausurarbeit.

Daten:	TNCH1. BA. Nr. 150 Stand: 28.09.2009 3 Start: SoSe 20	009
Modulname:	Grundlagen der Technischen Chemie	
(englisch):	Principles of Chemical Technology	
Verantwortlich(e):	Bertau, Martin / Prof. Dr.	
Dozent(en):	Bertau, Martin / Prof. Dr.	
	Šingliar, Ute / Dr.	
Institut(e):	Institut für Technische Chemie	
Dauer:	1 Semester	
Qualifikationsziele /	Die Studierenden sollen grundlegende Kenntnisse über die chemische	<u>,</u>
Kompetenzen:	Verfahrenstechnik und deren Anwendung auf die industrielle Produktion	on
	von Grundstoffen erhalten.	
Inhalte:	Einführung in chemische Produktionsverfahren, Stoff- und	
	Wärmetransportprozesse, Grundoperationen	
	Exemplarische Beschreibung wichtiger Prozesse, industrielle Produktion	on
	von Grundstoffen (Wasser, Luftzerlegung, Schwefelsäure,	
	Phosphorsäure)	
	Mechanische, elektrische und magnetische Grundoperationen (Förder	'n,
	Trennen, Vereinen)	
	Thermische Grundoperationen (Übertragen von Wärme und Stoffen,	
	Trennen und Vereinen)	
Typische Fachliteratur:	W. R. A. Vauck, H. A. Müller: Grundoperationen, Wiley-VCH;	
	M. Baerns, A. Behr et al.: Technische Chemie, Wiley-VCH.	
Lehrformen:	\$1 (SS): Einführung in die Technische Chemie / Vorlesung (2 SWS)	
	\$1 (SS): Grundoperationen der Technischen Chemie / Vorlesung (2 SW	√S)
Voraussetzungen für	Empfohlen:	
die Teilnahme:	Allgemeine, Anorganische und Organische Chemie für Chemiker,	
	<u>2012-06-30</u>	
	Allgemeine, Anorganische und Organische Chemie, 2009-09-02	
	Höhere Mathematik I für naturwissenschaftliche Studiengänge,	
	<u>2014-06-01</u>	
	Höhere Mathematik II für naturwissenschaftliche Studiengänge,	
	<u>2014-06-01</u>	
	Physik für Naturwissenschaftler I, 2012-05-10	
	Physik für Naturwissenschaftler II, 2012-05-10	
	Grundlegende Kenntnisse der Physikalischen Chemie	
Turnus:	jährlich im Sommersemester	
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehe	en
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:	
Leistungspunkten:	KA [90 min]	
Leistungspunkte:	6	
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)
	Prüfungsleistung(en):	
	KA [w: 1]	
Arbeitsaufwand:	Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 60h	
	Präsenzzeit und 120h Selbststudium. Letzteres umfasst Vor- und	
	Nachbereitung der Lehrveranstaltungen sowie Klausurvorbereitung.	

Daten:	HC. MA. Nr. 3147 Stand: 08.06.2012 Start: WiSe 2012
Modulname:	Halbleiterchemie
(englisch):	Chemistry of Semiconductors
Verantwortlich(e):	Bertau, Martin / Prof. Dr.
Dozent(en):	Heitmann, Johannes / Prof. Dr.
	Kroke, Edwin / Prof. Dr.
	Bertau, Martin / Prof. Dr.
	Mertens, Florian / Prof. Dr.
	Müller, Armin / Prof. Dr.
Institut(e):	Institut für Angewandte Physik
	Institut für Anorganische Chemie
	Institut für Technische Chemie
	Institut für Physikalische Chemie
Dauer:	2 Semester
Qualifikationsziele /	Der Studierende soll Kenntnisse und Kompetenzen über die Grundlagen,
Kompetenzen:	Herstellung, Verarbeitung und Anwendungen von halbleitenden
	Materialien erhalten.
Inhalte:	Synthese- und Reinigungsverfahren, Plasmaprozesse, Chemische Gas-
	und Flüssigphasenprozesse, Oberflächenmodifizierung und
	-charakterisierung
Typische Fachliteratur:	M. Baerns et al.: Lehrbuch der Technischen Chemie, Wiley-VCH; G. Emig,
'	E. Klemm: Technische Chemie, Springer; Winnacker/Küchler - Chemische
	Technik, Wiley-VCH, S. Wolf, R. Tauber: "Silicon Processing" Vol1:
	Process Technology, Lattice Press
Lehrformen:	S1 (WS): Vorlesung (3 SWS)
	S1 (WS): Seminar (1 SWS)
	S2 (SS): Vorlesung (1 SWS)
Voraussetzungen für	Empfohlen:
die Teilnahme:	Kenntnisse in Technischer, Anorganischer und Physikalischer Chemie,
	wie sie in den Modulen IC, AC und PC vermittelt werden.
Turnus:	jährlich im Wintersemester
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:
Leistungspunkten:	KA* [60 bis 120 min]
l sa sa gapa	AP*: Schriftliche Ausarbeitung oder Vortrag
	* Bei Modulen mit mehreren Prüfungsleistungen muss diese
	Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0)
	bewertet sein.
Leistungspunkte:	6
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)
	Prüfungsleistung(en):
	KA* [w: 2]
	AP*: Schriftliche Ausarbeitung oder Vortrag [w: 1]
	* Bei Modulen mit mehreren Prüfungsleistungen muss diese
	Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0)
	bewertet sein.
Arbeitsaufwand:	Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 75h
	Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und
	Nachbereitung der Lehrveranstaltungen, die schriftliche Ausarbeitung
	sowie die Vorbereitung auf die Klausurarbeit.
l	

Daten:	HM1NAT. BA. Nr. 605 Stand: 01.06.2014 📜 Start: WiSe 2009
Modulname:	Höhere Mathematik I für naturwissenschaftliche Studiengänge
(englisch):	Advanced Mathematics I for Scientists
Verantwortlich(e):	Eiermann, Michael / Prof. Dr.
Dozent(en):	Helm, Mario / Dr.
Institut(e):	Institut für Numerische Mathematik und Optimierung
Dauer:	1 Semester
Qualifikationsziele /	Die Studierenden sollen
Kompetenzen:	
	das elementare technische Reservoir der Mathematik (soweit es die Grundlagen der linearen Algebra sowie die Differential- und Integralrechnung einer reellen Variablen betrifft) erlernt haben,
	Verständnis der "mathematischen Sprache" entwickelt haben,
	 einfache mathematische Modelle aus den Naturwissenschaften analysieren können.
Inhalte:	Thematische Schwerpunkte sind reelle und komplexe Zahlen,
	elementare lineare Algebra, Folgen und Reihen, Differential- und
	Integralrechnung einer reellen Veränderlichen.
Typische Fachliteratur:	Bärwolff, G.: Höhere Mathematik für Naturwissenschaftler und
''	Ingenieure, Elsevier 2005.
Lehrformen:	S1 (WS): Vorlesung (3 SWS)
	S1 (WS): Übung (2 SWS)
Voraussetzungen für	Empfohlen:
die Teilnahme:	Kenntnisse der gymnasialen Oberstufe. Empfohlene Vorbereitung: LB Mathematik Sekundarstufe II, Vorkurs "Höhere Mathematik für naturwissenschaftliche Studiengänge"
Turnus:	jährlich im Wintersemester
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:
Leistungspunkten:	KA [180 min]
Leistungspunkte:	6
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): KA [w: 1]
Arbeitsaufwand:	Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 75h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltung, Vorbereitung und Bearbeiten der Klausurarbeit sowie das Lösen von Übungsaufgaben.

Daten:	HM2NAT. BA. Nr. 606 Stand: 01.06.2014 📜 Start: SoSe 2010
Modulname:	Höhere Mathematik II für naturwissenschaftliche Studiengänge
(englisch):	Advanced Mathematics II for Scientists
Verantwortlich(e):	Eiermann, Michael / Prof. Dr.
Dozent(en):	Helm, Mario / Dr.
Institut(e):	Institut für Numerische Mathematik und Optimierung
Dauer:	1 Semester
Qualifikationsziele /	Die Studierenden sollen
Kompetenzen:	
	 ein erweitertes technisches Reservoir der Mathematik (Matrixdarstellungen linearer Abbildungen, Eigenwertprobleme sowie die Differential- und Integralrechnung mehrerer reeller Variablen und das Lösen gewöhnlicher Differentialgleichungen) erlernt haben, ein tieferes Verständnis der "mathematischen Sprache" entwickelt haben, komplexere mathematische Modelle aus den Naturwissenschaften analysieren können.
Inhalte:	Thematische Schwerpunkte sind Basistransformationen, Matrixdarstellung linearer Abbildungen, Eigenwertprobleme, Fourier- und Potenzreihen, Differential- und Integralrechnung mehrerer reeller Veränderlichen incl. Extremalwertprobleme mit und ohne Nebenbedingungen, gewöhnliche Differentialgleichungen erster und zweiter Ordnung, Systeme von gewöhnlichen Differentialgleichungen.
Typische Fachliteratur:	Bärwolff, G.: Höhere Mathematik für Naturwissenschaftler und Ingenieure, Elsevier 2005.
Lehrformen:	S1 (SS): Vorlesung (3 SWS) S1 (SS): Übung (2 SWS)
Voraussetzungen für	Empfohlen:
die Teilnahme:	Höhere Mathematik I für naturwissenschaftliche Studiengänge, 2014-06-01
Turnus:	jährlich im Sommersemester
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:
Leistungspunkten:	KA [180 min]
Leistungspunkte:	6
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): KA [w: 1]
Arbeitsaufwand:	Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 75h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltung, Vorbereitung und Bearbeiten der Klausurarbeit sowie das Lösen von Übungsaufgaben.

Daten:	INDPV. MA. Nr. 3017 Stand: 27.07.2011 📜 Start: WiSe 2010
Modulname:	Industrielle Photovoltaik
(englisch):	Industrial Photovoltaic
Verantwortlich(e):	<u>Müller, Armin / Prof. Dr.</u>
Dozent(en):	Müller, Armin / Prof. Dr.
Institut(e):	Institut für Technische Chemie
Dauer:	1 Semester
Qualifikationsziele /	Die Studierenden sollen die wesentlichen Fertigungsschritte zur
Kompetenzen:	Herstellung von photovoltaischen Systemen kennen lernen und die
	hierfür notwendigen naturwissenschaftlichen Grundlagen auf die
	industrielle Fertigung anwenden. Weiterhin wird auf das
	gesellschaftliche und wirtschaftliche Umfeld der Photovoltaik
l p b a l b a	eingegangen.
Inhalte:	Chemisch - physikalische Grundlagen der kristallinen Silicium - Photovoltaik
	Herstellung und Kristallisation von Reinstsilicium
	Mechanische Bearbeitung von Silicium
	Herstellung von Solarzellen und Solarmodulen
	Alternative PV-Technologien
	Maschinen und Anlagen für die PV-Industrie
Typische Fachliteratur:	A. Goetzberger: Sonnenenergie Photovoltaik; J. Grabmeier: Silicon;
	A. Luque: Handbook of Photovoltaic Science and Engineering
Lehrformen:	S1 (WS): Vorlesung (2 SWS)
	S1 (WS): Exkursion (0,5 d)
Voraussetzungen für	Empfohlen:
die Teilnahme:	Naturwissenschaftlich – technische Grundlagen
Turnus:	jährlich im Wintersemester
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:
Leistungspunkten:	KA [90 min]
Leistungspunkte:	3
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)
1.0.0.	Prüfungsleistung(en):
	KA [w: 1]
Arbeitsaufwand:	Der Zeitaufwand beträgt 90h und setzt sich zusammen aus 34h
	Präsenzzeit und 56h Selbststudium. Das Selbststudium umfasst die Vor-
	und Nachbereitung der Lehrveranstaltungen und die
	Prüfungsvorbereitung.

Daten:	ALCH2. BA. Nr. 152 Stand: 27.06.2012 Start: WiSe 2013
Modulname:	Instrumentelle Analytische Chemie
(englisch):	Instrumental Analytical Chemistry
Verantwortlich(e):	Otto, Matthias / Prof. Dr.
Dozent(en):	Otto, Matthias / Prof. Dr.
Institut(e):	Institut für Analytische Chemie
Dauer:	1 Semester
Qualifikationsziele /	Die Studierenden erlangen Grundwissen über die
Kompetenzen:	instrumentalanalytischen Methoden der Spektroskopie, der
	Elektroanalytik und der chromatographischen Trennung.
Inhalte:	Grundbegriffe zur chemischen Analytik, Spektroskopie (optische
	Molekül- und Atomspektrometrie, kernmagnetische Resonanz-
	und Massenspektrometrie)
	Elektroanalytik (Potenziometrie, Voltammetrie)
	Trennmethoden (Chromatographie und Elektrophorese).
	Instrumentalanalytisches Praktikum (AES, UV/VIS/IR, NMR, MS,
	GC, HPLC, IC, Polarographie)
Typische Fachliteratur:	M. Otto: Analytische Chemie, Wiley-VCH; R. Kellner, JM. Mermet, M.
l spische i achiliteratur.	Otto, M. Valcárcel, M. Widmer: Analytical Chemistry, Wiley-VCH.
Lehrformen:	S1 (WS): Vorlesung (2 SWS)
Lemiormen.	S1 (WS): Übung (1 SWS)
	1 , , ,
	S1 (WS): Ggf. kann das Praktikum auch im Sommersemester angeboten
Varausaataus aan für	werden. / Praktikum (3 SWS)
Voraussetzungen für	Empfohlen:
die Teilnahme:	Analytische Chemie – Grundlagen, 2012-06-27
Turnus:	jährlich im Wintersemester
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:
Leistungspunkten:	KA* [90 min]
	AP*: Praktikum
	PVL: Seminarvortrag und Übungsaufgaben
	PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden.
	* Bei Modulen mit mehreren Prüfungsleistungen muss diese
	Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0)
	bewertet sein.
Leistungspunkte:	6
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)
	Prüfungsleistung(en):
	KA* [w: 1]
	AP*: Praktikum [w: 1]
	* Bei Modulen mit mehreren Prüfungsleistungen muss diese
	Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0)
	bewertet sein.
Arbeitsaufwand:	Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 90h
Arbeitsaufwand:	Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 90h Präsenzzeit und 90h Selbststudium. Letzteres umfasst die Vor- und

Daten:	PYCHWP1. BA. Nr. 155 Stand: 26.05.2009 🔼 Start: WiSe 2009
Modulname:	Mathematische Methoden in der Physikalischen Chemie
(englisch):	Mathematical Methods in Physical Chemistry
Verantwortlich(e):	Schiller, Peter / PD Dr. rer. nat. habil.
Dozent(en):	Schiller, Peter / PD Dr. rer. nat. habil.
Institut(e):	Institut für Physikalische Chemie
Dauer:	1 Semester
Qualifikationsziele /	Die Studierenden können die Dynamik chemischer und physikalischer
Kompetenzen:	Systeme mit gewöhnlichen und partiellen Differentialgleichungen
	beschreiben, lineare Antworttheorie anwenden, Messdaten mit
	Regressionsmethoden analysieren, Messsignale mathematisch
	beschreiben, Messwertverarbeitungsalgorithmen anwenden und digitale
	Filter bei der Messwertverarbeitung zum Einsatz bringen.
Inhalte:	1. Anwendung math. Methoden in der Physikalischen Chemie:
	Nichtlineare Dynamik und Selbstorganisation (Evolutionsgleichungen,
	zeitlich periodische chemische Reaktionen, autokatalytischen
	Reaktionen mit Diffusion, Musterbildung, solitäre Wellen); Lineare-
	Antwort-Theorie (Zusammenhang zwischen Fluktuationen und
	Dissipation, exempl. Anwendung des allgemeinen Formalismus auf
	dielektrische Spektroskopie und Rheologie); Stat. Analyse von
	Messdaten
	2. Digitale Messwertverarbeitung: Mathematische Beschreibung von
	Messsignalen (Signale im Zeit und Frequenzbereich, zeitkontinuierliche
	und zeitdiskrete Signale, Kenngrößen stochastischer Signale),
	Anwendung der Theorie linearer Systeme auf digitale
	Messwertverarbeitungsalgorithmen, Anwendung digitaler Filter
	(Grundoperationen der digitalen Messwertverarbeitung, Driftkorrektur
	mit digitalen Filtern, dynamische Korrektur von Messsignalen).
	Praktische Übung: Anwendung der Programme MATLAB, Maple bzw.
	Mathematica. Anfertigung eigener MATLAB -Programme.
Typische Fachliteratur:	D. Kondepudi, I. Prigogine: Modern Thermodynamics, Wiley; G. Strobl:
	Physik kondensierter Materie, Springer-Verlag; D. Murray: Mathematical
	Biology, Springer-Verlag; L. Sachs: Angewandte Statistik, Springer-
	Verlag. R. Best: Digitale Signalverarbeitung und -simulation, AT Verlag
	Aarau.
Lehrformen:	S1 (WS): Vorlesung (2 SWS)
	S1 (WS): Praktikum (3 SWS)
Voraussetzungen für	Empfohlen:
die Teilnahme:	Kenntnisse, aus den Modulen Chemische Thermodynamik und Kinetik,
-	Experimentelle und Theoretische Physikalische Chemie.
Turnus:	jährlich im Wintersemester
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:
Leistungspunkten:	AP*: Belegarbeit (im Umfang von ca. 15 Seiten) oder Referat (nach Wahl
	des Studierenden) [30 min]
	AP*: Test am Rechner [90 min]
	* Dai Madulan mit madaganan Dui fungalaiatun mana dia a
	* Bei Modulen mit mehreren Prüfungsleistungen muss diese
	Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0)
Loietungenunkte	bewertet sein.
Leistungspunkte:	6 Die Note ergibt eich entenrechend der Cowichtung (w) aus felgenden(r)
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)
	Prüfungsleistung(en):
	AP*: Belegarbeit (im Umfang von ca. 15 Seiten) oder Referat (nach Wahl
I	des Studierenden) [w: 1]

	AP*: Test am Rechner [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein.
Arbeitsaufwand:	Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 75h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltung, die Anfertigung der Hausarbeit sowie die Vorbereitung auf den Rechnertest.

Daten:	MIBIPRA. BA. Nr. 156 Stand: 17.08.2010 🔁 Start: SoSe 2009
Modulname:	Mikrobiologisch-biochemisches Praktikum
(englisch):	Microbiological Biochemical Laboratory
Verantwortlich(e):	Schlömann, Michael / Prof. Dr.
Dozent(en):	Schlömann, Michael / Prof. Dr.
	Kaschabek, Stefan / Dr.
Institut(e):	Institut für Biowissenschaften
Dauer:	1 Semester
Qualifikationsziele /	Die Studierenden sollen wichtige mikrobiologische und biochemische
Kompetenzen:	Methoden kennen lernen und einüben. Sie sollen in der Lage sein,
	Mikroorganismen mit verschiedenen Medien anzureichern, zu isolieren
	und in Reinkultur zu kultivieren. Sie sollen biochemische Methoden
	einüben, mit denen Wachstum, Stoffwechsel und Produkte von
	Mikroorganismen (und anderen Organismen) charakterisiert werden
	können.
Inhalte:	Steriles Arbeiten. Herstellung von Minimal- und Komplexmedien, Gießen
	von Agarplatten. Anreicherung, Isolierung und Identifizierung von
	Bakterien. Versuche zu verschiedenen Stoffwechseltypen und
	-leistungen von Mikroorganismen: Laugung von Sulfiden, N ₂ -Fixierung,
	Antibiotika-Synthese, Bildung von Poly-ß-hydroxybuttersäure etc., HPLC-
	Analysen, Photometrie
Typische Fachliteratur:	R. Süßmuth et al. "Mikrobiologisch-Biochemisches Praktikum", Thieme;
	E. Bast "Mikrobiologische Methoden" Spektrum Akademischer Verlag;
	A. Steinbüchel & F. B. Oppermann-Sanio "Mikrobiologisches Praktikum"
	Springer
Lehrformen:	S1 (SS): Vorlesung (1 SWS)
	S1 (SS): als Blockveranstaltung / Praktikum (7 SWS)
Voraussetzungen für	Empfohlen:
die Teilnahme:	Chemie-Kenntnisse aus dem Modul "Allgemeine, Anorganische und
	Organische Chemie" und theoretische Kenntnisse in Mikrobiologie und
	Biochemie aus dem Modul "Grundlagen der Biochemie und
	Mikrobiologie"
Turnus:	jährlich im Sommersemester
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:
Leistungspunkten:	KA* [90 min]
	AP*: Versuchsprotokolle
	PVL: Aktive Teilnahme am Praktikum
	PVL: Kurzprüfungen zu den Praktika [10 min]
	PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden.
	* Bei Modulen mit mehreren Prüfungsleistungen muss diese
	Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0)
	bewertet sein.
Leistungspunkte:	6
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)
	Prüfungsleistung(en):
	KA* [w: 1]
	AP*: Versuchsprotokolle [w: 1]
	* Bei Modulen mit mehreren Prüfungsleistungen muss diese
	Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0)
	bewertet sein.
Arbeitsaufwand:	Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 120h
	Präsenzzeit und 60h Selbststudium. Letzteres umfasst die theoretische
	Vorbereitung der Versuche, die Anfertigung von Versuchsprotokollen
	sowie die Vorbereitung auf die Klausurarbeit.
	pome are volvererang an are madoural bere

Daten:	MINCHEM. MA. Nr. 2935 Stand: 03.03.2010 Start: SoSe 2011
Modulname:	Mineralchemie und Biomineralisation
(englisch):	Mineral Chemistry and Biomineralization
Verantwortlich(e):	Voigt, Wolfgang / Prof. Dr.
Dozent(en):	Voigt, Wolfgang / Prof. Dr.
Institut(e):	Institut für Anorganische Chemie
Dauer:	1 Semester
Qualifikationsziele /	Nach Abschluss des Moduls ist der Student in der Lage, Löse- und
Kompetenzen:	Kristallisationsprozesse in komplex zusammengesetzten
	Mineralsystemen in Umwelt und Technik einzuschätzen, zu modellieren
	und mit geeigneten Methoden experimentell zu untersuchen.
Inhalte:	Salzminerale des Meerwassersystems, Löslichkeitsdiagramme von
	Mehrkomponentensystemen: Darstellung und Modellierung, natürliche
	Carbonate, Minerale der Bindebaustoffe: Gips, Zementphasen, MgO-
	betone, Oberflächenchemie der Oxidminerale, Biomineralisation
Typische Fachliteratur:	Usdowski, Dietzel " Atalas and Data of Solid-Solution Equilibria of Marine
	Evaporites", Springer 1998;
	"Modelling in Aquatic Chemistry", OECD Publication (book) 1997, ISBN
	92-64-15569-4;
	Behrens, Baeuerlein "Handbook of Biomineralization", Wiley-VCH, 2007.
Lehrformen:	S1 (SS): Vorlesung (2 SWS)
	S1 (SS): Übung (1 SWS)
	S1 (SS): Praktikum (5 SWS)
Voraussetzungen für	Empfohlen:
die Teilnahme:	Bachelorabschluss in Chemie, Angewandter Naturwissenschaft,
	Mineralogie, Werkstoffwissenschaften oder vergleichbare Qualifikation
Turnus:	jährlich im Sommersemester
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:
Leistungspunkten:	AP: Bearbeitung der Übungs- und Praktikumsaufgaben
	Die Modulnote ergibt sich aus Mittelwert der benoteten Übungs- und
	Praktikumsaufgaben.
Leistungspunkte:	6
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)
	Prüfungsleistung(en):
	AP: Bearbeitung der Übungs- und Praktikumsaufgaben [w: 1]
Arbeitsaufwand:	Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 120h
	Präsenzzeit und 60h Selbststudium. Letzteres umfasst die Vor- und
	Nachbereitung der Vorlesung, die Bearbeitung der Übungsaufgaben und
	Auswertung der Praktikumsversuche.

Daten:	PCTHEOR. MA. Nr. 3140 Stand: 03.03.2010 Start: WiSe 2010
Modulname:	Moderne Aspekte der Theoretischen Physikalischen Chemie
(englisch):	Modern Aspects of Theoretical Physical Chemistry
Verantwortlich(e):	Mögel, Hans-Jörg / Prof. Dr.
Dozent(en):	Mögel, Hans-Jörg / Prof. Dr.
	Schiller, Peter / PD Dr. rer. nat. habil.
Institut(e):	Institut für Physikalische Chemie
Dauer:	1 Semester
Qualifikationsziele /	Vermittlung von Grundkenntnissen über moderne Theorien und
Kompetenzen:	Simulationsmethoden zur Reaktionskinetik, Struktur, Dynamik und
'	Umwandlung komplexer Phasen
Inhalte:	Stochastische Methoden zur Beschreibung chemischer Reaktionen,
	Mastergleichungen, Langevin-Gleichung, Fokker-Planck-Gleichung,
	Statistische Grundlagen der Eyring-Theorie, Stoßdynamik mit
	Wechselwirkungspotenzial, Strukturbildung bei chemischen Reaktionen,
	chemisches Chaos, Fraktale, Bildung von fraktalen Strukturen, räumliche
	und zeitliche Korrelationsfunktionen, teilgeordnete Phasen mit
	Orientierungsordnung, Landau-Theorie und Scaling-Theorie von
	Phasenumwandlungen, Keimbildung und Keimwachstum, Monte-Carlo-
	Simulationen und Moleküldynamik
Typische Fachliteratur:	D. Avnir, The Fractal Approach to Heterogeneous Chemistry, Wiley 1989;
	HO. Peitgen, H. Jürgens, D. Saupe, Fraktale, Klett-Cotta 1992; R. D.
	Levin, R. B. Bernstein, Molekulare Reaktionsdynamik, Teubner 1991;
	A.M.Kuznetsov, Stochastic and Dynamic Views of Chemical Reaction
	Kinetics in Solution, Press polytechn. univ. rom. 1999; W. Göpel, HD.
	Wiemhöfer, Statistische Thermodynamik, Spektrum Akad. V. 2000; D. P.
	Landau, K. Binder, Monte Carlo Simulations, Cambridge Univ. Press
	2000; D. Frenkel, B. Smit, Understanding Molecular Simulation,
	Academic Press 2002
Lehrformen:	S1 (WS): Vorlesung (3 SWS)
Lennormen.	S1 (WS): Vollesuring (3 SWS) S1 (WS): Praktikum (2 SWS)
Voraussetzungen für	Empfohlen:
die Teilnahme:	Bachelor-Grad in Chemie oder in einer anderen natur- oder
die Teililalille.	ingenieurwissenschaftlichen Fachrichtung
Turnus:	iährlich im Wintersemester
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:
Leistungspunkten:	MP [30 bis 45 min]
	PVL: Bestandene Praktikumsarbeit
Laiatura ganundeta	PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden.
Leistungspunkte:	Die Note ergibt eich entenrechend der Cowiehtung (w) aus felgenden(r)
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)
	Prüfungsleistung(en):
Aula alta a di Constant	MP [w: 1]
Arbeitsaufwand:	Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 75h
	Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und
	Nachbereitung der Lehrveranstaltungen, die Anfertigung der
	Praktikumsarbeit und die Vorbereitung auf die Klausurarbeit.

Daten:	ORCH1. MA. Nr. 3132 Stand: 08.06.2012 7	Start: WiSe 2012
Modulname:	Moderne Reagenzien und Methoden der o	rganischen Synthese
(englisch):	Modern Reagents and Methods of Organic Cher	
Verantwortlich(e):	Mazik, Monika / Prof. Dr.	
Dozent(en):	Mazik, Monika / Prof. Dr.	
,	Pollex, Rolf / Dr.	
	Seichter, Wilhelm / Dr.	
Institut(e):	Institut für Organische Chemie	
Dauer:	1 Semester	
Qualifikationsziele /	Die Studierenden erlangen einen vertieften Ein	blick in die
Kompetenzen:	Reaktivitäts-/Selektivitätsproblematik organischer Synthesen und	
	kennen die Vorzüge wie auch die Grenzen mod	-
	Methodenanwendungen.	iemer reagenziem and
Inhalte:	Moderne Methoden zur C-C-Verknüpfung (spezi	ielle Englat-Chemie und
	organometall-vermittelte Reaktionen), Umwand	
	Gruppen (spezifische Oxidationen und Reduktionen und Reduktion	_
	Aktivierung funktioneller Gruppen, Umpolung fu	
	Asymmetrische Synthese.	armetoriener Grapperi.
	Phasentransfer-Katalyse, Festphasensynthese,	Kombinatorische
	Synthese, Templat-Synthese, Photochemie, Son	
	Mikrowellen.	nochemie, enemie mie
Typische Fachliteratur:	J. Fuhrhop, G. Penzlin: Organic Synthesis, VCH;	R K Mackie D M Smith
	R. A. Aitken: Guidebook to Organic Synthesis, L	
	Elemente der Syntheseplanung, Elsevier; R. S.	_
	Organic Synthesis, Wiley; M. Nógrádi: Stereose	
	Krause: Metallorganische Chemie, Spektrum Ak	
Lehrformen:	S1 (WS): Vorlesung (3 SWS)	ducinischer Verlag.
Lemiornen.	S1 (WS): Seminar (1 SWS)	
Voraussetzungen für	Empfohlen:	
die Teilnahme:	Kenntnisse, die im Modul ORCHWP. BA. Nr. 160) (Prinzinien der
	organischen Synthese) vermittelt werden.	(i mizipien dei
Turnus:	jährlich im Wintersemester	
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungs	nunkten ist das Bestehen
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:	puliktell ist das bestellell
Leistungspunkten:	KA [60 bis 120 min]	
Leistangspankten.	PVL: Übung mit Diskussionsbeiträge	
	PVL: Seminarvortrag mit anschließender Fachd	ickussion odor als
	Äquivalent eine schriftliche Ausarbeitung über	
	PVL müssen vor Prüfungsantritt erfüllt sein bzw	
Loistungspunktor	6	7. Hachgewiesen werden.
Leistungspunkte: Note:	Die Note ergibt sich entsprechend der Gewicht	ung (w) aus folgondon(r)
INOLE.	Prüfungsleistung(en):	ung (w) aus loigeilueil(l)
	1 3	
 Arbeitsaufwand:	KA [w: 1] Dor Zoitaufwand hoträgt 180h und sotzt sich zu	isammon aus 60h
Arbeitsaurwand:	Der Zeitaufwand beträgt 180h und setzt sich zu Bräsenzzeit und 130h Selbststudium Letzteres	
	Präsenzzeit und 120h Selbststudium. Letzteres	
	Nachbereitung der Lehrveranstaltung sowie Pri	utungsvorbereitung.

Daten:	MODTECH. BA. Nr. 3344 Stand: 27.07.2011 Start: SoSe 2010
Modulname:	Modultechnik
(englisch):	PV Solar Modules - Materials and Technology
Verantwortlich(e):	Meyer, Dirk / Prof. Dr. rer. nat.
Dozent(en):	Schwirtlich, Ingo / Prof. Dr.
Institut(e):	Institut für Experimentelle Physik
Dauer:	2 Semester
Qualifikationsziele /	Die Studierenden sollen die physikalischen Zusammenhänge und
Kompetenzen:	fachspezifischen Begriffe im Aufbau und in der Verschaltung
	photovoltaischer Module sowie die Fehlermöglichkeiten und
	klimatischen Einflüsse in Wechselwirkung mit den eingesetzten
	Materialien und den elektronischen Komponenten verstanden haben. Sie
	sollen die Fähigkeit besitzen, die Einstrahlungsleistung der Sonne auf
	Solargeneratoren und deren Umwandlung in elektrische Energie für
	verschiedene geografische Orte mit Beschränkungen des sphärischen
	Halbraums durch verschattende Objekte mit mathematischen Mitteln
	beschreiben, vorhersagen und entsprechende Anlagen dimensionieren
	zu können.
Inhalte:	Werkstoffkundliche Fragestellungen aus den Bereichen organische und
	anorganische Chemie, Metalle und Silikate. Grundlagen und Funktion
	elektronischer Komponenten und ihr Zusammenwirken in einem
	Solargenerator. Jahreszeitliche Berechnung der Sonneneinstrahlung
	unter Berücksichtigung der Erdbahn (Ekliptik) und Deklination,
	Verschaltungstechnik für Solargeneratoren und Ertragsberechnung der
	elektrischen Energie.
Typische Fachliteratur:	Grundlagen der organischen und anorganischen Chemie, Metallkunde,
	Halbleiter-Schaltungstechnik (Tietze Schenk), Photovoltaik: (Häberlin),
	Regenerative Energiesysteme: (Quaschnig), Photovoltaische Anlagen:
	(Deutsche Gesellschaft für Sonnenenergie)
Lehrformen:	S1 (SS): Vorlesung (2 SWS)
	S2 (WS): Vorlesung (2 SWS)
Voraussetzungen für	Empfohlen:
die Teilnahme:	Physik für Naturwissenschaftler II, 2014-06-02
	Physik für Naturwissenschaftler I, 2014-06-02
	Allgemeine, Anorganische und Organische Chemie, 2009-09-02
	Einführung in die Prinzipien der Chemie, 2009-08-18
	Physik für Ingenieure, 2009-08-18
	Grundkenntnisse in Physik und Chemie, wie sie in den o.g. Modulen
	vermittelt werden.
Turnus:	jährlich im Sommersemester
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:
Leistungspunkten:	KA [60 min]
Leistungspunkte:	4
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)
	Prüfungsleistung(en):
	KA [w: 1]
Arbeitsaufwand:	Der Zeitaufwand beträgt 120h und setzt sich zusammen aus 60h
	Präsenzzeit und 60h Selbststudium.

Daten:	MMQC. MA. Nr. 3146 Stand: 30.06.2011 Start: SoSe 2011
Modulname:	Molekülmodellierung und Quantenchemie
(englisch):	Molecular Modelling and Quantum Chemistry
Verantwortlich(e):	Schüürmann, Gerrit / Prof. Dr.
Dozent(en):	Mertens, Florian / Prof. Dr.
	Schüürmann, Gerrit / Prof. Dr.
Institut(e):	Institut für Physikalische Chemie
	Institut für Organische Chemie
Dauer:	1 Semester
Qualifikationsziele /	Die Studenten verfügen über vertiefte Kenntnisse quantenchemischer
Kompetenzen:	Rechenverfahren (semiempirische Modelle, ab initio-Methoden, Dichte-
	funktionaltheorie) zur Molekülmodellierung. Durch begleitende Übungen
	erhalten sie Erfahrungen in der praktischen Anwendung dieser
	Methoden zur Berechnung von Moleküleigenschaften.
Inhalte:	Ab initio-Quantenchemie (Hartree-Fock-Näherung, Roothan-Gleichungen
	für RHF, Pople-Nesbet-Gleichungen für UHF, Basissätze), Dichtefunktio-
	naltheorie, Konfigurationswechselwirkung, Coupled-Cluster-Methoden,
	Basissatzsuperpositionsfehler, Größenkonsistenz, Pseudopotentiale, re-
	lativistische Korrekturen, spektroskopische Rechnungen (UV, IR, NMR).
	Elektronenkorrelation am Beispiel der H ₂ -Dissoziation (RHF vs. UHF vs.
	CI), Møller-Plesset-Störungstheorie, Wellenfunktionsanalyse (Coulston-,
	Mulliken- und Löwdin-Populationsanalysen, natürliche Bindungsorbitale),
	Bildungsenthalpie, thermochemische Rechnungen (Nullpunktsschwin-
	gung, Frequenzanalyse), Übergangszustände chemischer Reaktionen
Typische Fachliteratur:	C.J. Cramer: Essentials of Computational Chemistry, 2nd Ed., Wiley
	2004;
	F. Jensen: Introduction to Computational Chemistry, 2nd Ed., Wiley
	2006;
	W. Koch, M. Holthausen: A Chemist´s Guide to Density Functional
	Theory, Wiley-VCH, 2001;
	E. Lewars: Computational Chemistry, Kluwer 2003;
	A. Szabo, N. Ostlund: Modern Quantum Chemistry, Dover, 1989.
Lehrformen:	S1 (SS): Vorlesung (2 SWS)
	S1 (SS): Übung (2 SWS)
Voraussetzungen für	Empfohlen:
die Teilnahme:	Bachelor-Grad in Chemie oder in Angewandter Naturwissenschaft oder
	in einer anderen natur- oder ingenieurwissenschaftlichen Fachrichtung
Turnus:	jährlich im Sommersemester
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:
Leistungspunkten:	MP/KA (KA bei 10 und mehr Teilnehmern) [MP mindestens 30 min / KA
	90 min]
	PVL: Bestandene Übungsaufgaben
	PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden.
Leistungspunkte:	6
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)
	Prüfungsleistung(en):
	MP/KA [w: 1]
Arbeitsaufwand:	Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 60h
	Präsenzzeit und 120h Selbststudium. Letzteres umfasst die Vor- und
	Nachbereitung der Vorlesungen und Übungen und die Vorbereitung auf
	die Prüfung.
	die Prüfung.

Daten:	ORCH1. BA. Nr. 157 Stand: 25.01.2015 📜 Start: WiSe 2013
Modulname:	Organische Chemie spezieller Stoffklassen
(englisch):	Organic Chemistry of Special Classes of Substances
Verantwortlich(e):	Mazik, Monika / Prof. Dr.
Dozent(en):	Mazik, Monika / Prof. Dr.
Institut(e):	Institut für Organische Chemie
Dauer:	1 Semester
Qualifikationsziele /	Die Studierenden erhalten einen Überblick über spezielle Stoffgruppen
Kompetenzen:	der organischen Chemie. Sie werden mit den Darstellungswegen von
	komplexer aufgebauten und funktionalisierten organischen
	Verbindungen vertraut sein, die Strukturen zuordnen können und ihre
	chemischen Umwandlungen beherrschen. In der praktischen Ausbildung
	werden sie den sicheren Umgang mit Chemikalien und Laborgeräten
	erlernt haben sowie Grundoperationen zur Darstellung, Reinigung und
	Charakterisierung von organischen Stoffen anwenden können.
Inhalte:	Enole, Enolate, Enamine, CH-acide Verbindungen und ihre Reaktionen
	(Aldol-Reaktion, Knoevenagel-Reaktion, Esterkondensation und
	verwandte Reaktionen); reduktive und oxidative Reaktionsprodukte von
	Carbonylverbindungen (Acyloine, Pinakole); Halogenketone (Haloform-
	Reaktion), konjugierte Carbonylverbindungen (Michael-Addition);
	Konjugierte Diene (Diels-Alder-Reaktion). Einfache Heterocyclen
	(Nomenklatur, Darstellung und Reaktionen wichtiger
	Verbindungsbeispiele). Präparation und stoffliche Charakterisierung
	einfacher organisch-chemischer Verbindungen.
Typische Fachliteratur:	K. P. Vollhardt, N. E. Schore: Organische Chemie, Wiley-VCH;
	Beyer-Walter: Lehrbuch der Organischen Chemie, Hirzel;
	T. Eicher, S. Hauptmann: Chemie der Heterocyclen, Thieme;
	Organikum - Organisch-chemisches Grundpraktikum, Wiley-VCH;
	J. Leonhard, B. Lygo, G. Procter: Praxis der Organischen Chemie, VCH.
Lehrformen:	S1 (WS): Vorlesung (3 SWS)
	S1 (WS): Übung (1 SWS)
	S1 (WS): Praktikum (6 SWS)
Voraussetzungen für	Empfohlen:
die Teilnahme:	Allgemeine, Anorganische und Organische Chemie, 2009-09-02
Turnus:	jährlich im Wintersemester
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:
Leistungspunkten:	in Prüfungsvariante 1:
	MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPOC. [45 bis
	60 min]
	PVL: Abschluss Praktikum
	PVL: Übungsaufgaben
	PVL: Schriftliches Abtestat [60 min]
	oder
	in Prüfungsvariante 2:
	KA [90 min]
	PVL: Übungsaufgaben mit Diskussionsbeiträgen, Seminarvortrag mit
	Fachdiskussion oder als Äquivalent eine schriftliche Ausarbeitung über
	ein Thema des Lehrstoffs
	PVL: Abschluss des Praktikums incl. Eingangstestat und 5 protokollierten
	Präparatestufen
	Prüfungsvariante 1: Für Studierende des Diplomstudienganges Chemie.
	Prüfungsvariante 2: Für Studierende aller Studiengänge außer dem
	Diplomstudiengang Chemie.
	PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden.

Leistungspunkte:	9
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): in Prüfungsvariante 1: MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPOC. [w: 1]
	oder in Prüfungsvariante 2:
	KA [w: 1]
Arbeitsaufwand:	Der Zeitaufwand beträgt 270h und setzt sich zusammen aus 150h Präsenzzeit und 120h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltungen sowie die Prüfungsvorbereitung.

Daten:	ORGHLM. MA. Nr. 3204 Stand: 27.07.2011 5 Start: SoSe 2011	
Modulname:	Organische Halbleiter und Metalle	
(englisch):	Organic Semiconductors and Metals	
Verantwortlich(e):	Knupfer, Martin / PD Dr.	
Dozent(en):	Knupfer, Martin / PD Dr.	
Institut(e):	Institut für Theoretische Physik	
Dauer:	1 Semester	
Qualifikationsziele /	Die Studierenden sollen grundlegende strukturelle und physikalische	
Kompetenzen:	Eigenschaften von organischen molekularen Festkörpern, insbesondere	
'	von organischen Halbleitern und Metallen, kennenlernen.	
Inhalte:	Behandelt werden	
	 Grundlagen der Molekülphysik Struktur und Herstellung von Molekülkristallen Grundlegende elektronische und optische Eigenschaften organischer Halbleiter wie Bandstruktur Hoppingleitfähigkeit Polaronenzustände Exzitonen Grenzflächeneigenschaften Eigenschaften und verschiedene physikalische Phasen in Ladungstransfersalzen 	
Typische Fachliteratur:	Monographien zum Thema organische Halbleiter, organische Elektronik,	
Typische Fachilteratur.	_ = :	
	Polymerelektronik, organische Metalle, Ladungstransfersalze.	
Lehrformen:	S1 (SS): Vorlesung (2 SWS)	
Varausa ataun san für	S1 (SS): Exkursion (0,5 d)	
Voraussetzungen für	Empfohlen:	
die Teilnahme:	Struktur der Materie I: Festkörper, 2014-07-08	
T	Struktur der Materie II: Elektronische Eigenschaften, 2014-07-08	
Turnus:	jährlich im Sommersemester	
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen	
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:	
Leistungspunkten:	MP/KA (KA bei 25 und mehr Teilnehmern) [MP mindestens 30 min / KA 90 min]	
Leistungspunkte:	3	
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): MP/KA [w: 1]	
Arbeitsaufwand:	Der Zeitaufwand beträgt 90h und setzt sich zusammen aus 34h Präsenzzeit und 56h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Vorlesungen und der Exkursion und die Vorbereitung auf die mündliche Prüfungsleistung bzw. Klausurarbeit.	

Daten:	ORCHWP2. MA. Nr.	Stand: 08.06.2012 📜	Start: SoSe 2013
Daten.	3145	Stand. 00.00.2012 🙎	Start. 303e 2013
Modulname:	Organische Supramole	kulare Chemie und M	ledizinische Chemie
(englisch):	Organic Supramolecular		
Verantwortlich(e):	Mazik, Monika / Prof. Dr.	Chemistry and Medicine	ii Chemistry
Dozent(en):	Mazik, Monika / Prof. Dr.		
Institut(e):	Institut für Organische Ch	hemie	
Dauer:	1 Semester	<u>lieinie</u>	
Qualifikationsziele /		dia Kanzanta dar sunr	molekularen
Kompetenzen:	Die Studierenden können die Konzepte der supramolekularen Strukturbildung organischer Wirt-Gast-Komplexe sowie höherer		
Kompetenzen.	Molekülaggregationen un		
	wissenschaftlich nutzen u		
	Studenten erlangen einer	ii Eiliblick ili die Probleii	latik del
Inhalte:	Wirkstoffentwicklung.	- Dadautung dar (argan	icch on)
innaite:	Definition und prinzipielle		
	supramolekularen Chemi	_	-
	Prinzipien der Wirt-Gast-G	•	3
	Kationen, Anionen und No		
	(Kronenether, Cryptande		
	andere Hohlraummolekül	-	und Seiektivitäten;
	Prinzip der Präorganisatio		5
	Mechanisch verknüpfte S	•	
	selbstassemblierte Hohlr		-
	Anwendungen: Ionenana	•	_
	supramolekulare Katalyse		komplexe
	Funktionseinheiten und n		
	Einführung in die Medizin		_
	Wechselwirkungen. Desig		
Typische Fachliteratur:	F. Vögtle: Supramolekula		
	P. A. Gale, D. K. Smith: Si	<u>=</u>	
	L. Atwood: Supramolecul		
	Supramolecular Chemistr		
	Supramolecular Chemistr	=	
	W. Steed, D. R. Turner, K		
	Chemistry and Nanochen		
	Supramolecular Chemistr		
	Wirkstoffdesign, Spektrur	m; G. Thomas: Medicina	l Chemistry. An
	Introduction, Wiley.		
Lehrformen:	S1 (SS): Vorlesung (2 SW	' S)	
	S1 (SS): Übung (2 SWS)		
	S1 (SS): Praktikum (2 SW	/S)	
Voraussetzungen für	Empfohlen:		
die Teilnahme:	Grundlegende Kenntnisse		nie.
Turnus:	jährlich im Sommerseme		
Voraussetzungen für	_		ınkten ist das Bestehen
die Vergabe von	der Modulprüfung. Die Mo	odulprüfung umfasst:	
Leistungspunkten:	MP [30 bis 40 min]		
	AP: Seminarvortrag mit D	Diskussion [45 min]	
	PVL: Praktikum		
	PVL müssen vor Prüfungs	santritt erfüllt sein bzw.	nachgewiesen werden.
Leistungspunkte:	7		
Note:	Die Note ergibt sich ents	prechend der Gewichtur	ng (w) aus folgenden(r)
	Prüfungsleistung(en):		
	MP [w: 2]		
	AP: Seminarvortrag mit D	Diskussion [w: 1]	

Arbeitsaufwand:	Der Zeitaufwand beträgt 210h und setzt sich zusammen aus 90h
	Präsenzzeit und 120h Selbststudium. Letzteres umfasst die Vor- und
	Nachbereitung der Lehrveranstaltung sowie die Prüfungsvorbereitung.

Daten:	ANCHWP. BA. Nr. 158 Stand: 02.06.2009 📜 Start: WiSe 2009
Modulname:	Organometallchemie
(englisch):	Organometallic Chemistry
Verantwortlich(e):	Kroke, Edwin / Prof. Dr.
Dozent(en):	Kroke, Edwin / Prof. Dr.
	Böhme, Uwe / PD Dr. rer. nat. habil.
	<u>Wagler, Jörg / Dr. rer. nat.</u>
Institut(e):	Institut für Anorganische Chemie
Dauer:	1 Semester
Qualifikationsziele /	Die Studierenden sollen einen tieferen Einblick in die Anorganische
Kompetenzen:	Chemie erlangen. Es werden praktische und theoretische Kompetenzen
	zur Synthese und Charakterisierung von Organometallverbindungen
	vermittelt, die für die Durchführung der Bachelorarbeit im Bereich der
	Anorganischen Chemie nützlich sind.
Inhalte:	Metallorganische Verbindungen der Hauptgruppenelemente:
	Synthese & ausgewählte Verbindungen (Li-, Mg-, Hg-, Al-, Zn-
	und Si-Verbindungen).
	Metallorganische Verbindungen der Nebengruppenelemente:
	Isolobal-Prinzip, Synthese & ausgewählte Verbindungen
	(Carben-, Carbin- und Carbonyl-Komplexe; Alkenyle, Alkinyle,
	cyclische p-Systeme); ausgewählte Liganden (u.a. Phosphine, H_2 ,
	N_2 und O_2), agostische Wechselwirkung.
	 Praktische und theoretische Einführung in die präparativen
	Methoden der Organometallchemie (Schlenk- und
	Gloveboxtechnik, Autoklaventechnik, strukturelle
	Charakterisierung der Produkte).
Typische Fachliteratur:	J. E. Huheey: Anorganische Chemie;
	Ch. Elschenbroich, A. Salzer: Organometallchemie, Teubner;
	D. F. Shriver, P. W. Atkins, C. H. Langford: Anorganische Chemie, Wiley-
	VCH.
Lehrformen:	S1 (WS): Vorlesung (2 SWS)
	S1 (WS): Praktikum (3 SWS)
Voraussetzungen für	Empfohlen:
die Teilnahme:	Anorganische Chemie der Nebengruppenelemente, 2012-07-26
Turnus:	jährlich im Wintersemester
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:
Leistungspunkten:	MP* [30 min]
	AP*: Belegarbeit und Vortrag über die Ergebnisse der
	Praktikumsaufgabe
	PVL: Erfolgreiche Teilnahme am Praktikum
	PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden.
	* Bei Modulen mit mehreren Prüfungsleistungen muss diese
	Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0)
	bewertet sein.
Leistungspunkte:	6
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)
	Prüfungsleistung(en):
	MP* [w: 2]
	AP*: Belegarbeit und Vortrag über die Ergebnisse der
	Praktikumsaufgabe [w: 1]
	* Bei Modulen mit mehreren Prüfungsleistungen muss diese

	Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein.
Arbeitsaufwand:	Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 75h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltungen, die schriftliche Ausarbeitung sowie die Vorbereitung auf die Prüfung.

Daten:	PHN1 .BA.Nr. 056 Stand: 02.06.2014 📜 Start: WiSe 2014	
Modulname:	Physik für Naturwissenschaftler I	
(englisch):	Physics for Natural Sciences I	
Verantwortlich(e):	Meyer, Dirk / Prof. Dr. rer. nat.	
Dozent(en):	Meyer, Dirk / Prof. Dr. rer. nat.	
Institut(e):	Institut für Experimentelle Physik	
Dauer:	1 Semester	
Qualifikationsziele /	Die Studierenden sollen physikalische Denkweisen und fachspezifische	
Kompetenzen:	Begriffsbildungen im Makro- und Mikrokosmos verinnerlicht und	
	verstanden haben. Sie sollen die Fähigkeit besitzen, physikalische	
	Vorgänge analytisch zu erfassen, sie mit mathematischen Mitteln zu	
	beschreiben und vorherzusagen.	
Inhalte:	Klassische Mechanik	
	Bewegung starrer Körper, insbesondere ihrer Rotation	
	Beschreibung ruhender und strömender Flüssigkeiten und Gase	
Torrigado a Franklika a kara	(Aero- und Hydrostatik und -dynamik)	
Typische Fachliteratur:	P.A. Tipler: Physik, Heidelberg 2000	
	W. Demtröder: Experimentalphysik, Bd. 1: Mechanik und Wärme, Berlin 2003	
	Chr. Gerthsen; D. Meschede: Physik, Berlin 2003	
Lehrformen:	S1 (WS): Vorlesung (4 SWS)	
	S1 (WS): Übung (2 SWS)	
Voraussetzungen für	Empfohlen:	
die Teilnahme:	Kenntnisse der gymnasialen Oberstufe, empfohlen: Vorkurs Mathematik und Physik	
Turnus:	iährlich im Wintersemester	
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen	
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:	
Leistungspunkten:	KA [120 min]	
Leistungspunkte:	6	
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en):	
Arbeitsaufwand:	KA [w: 1] Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 90h Präsenzzeit und 90h Selbststudium.	

Daten:	PHN2 .BA.Nr. 057	Stand: 02.06.2014 📜	Start: SoSe 2015
Modulname:	Physik für Naturwis	ssenschaftler II	
(englisch):	Physics for Natural So	ciences II	
Verantwortlich(e):	Meyer, Dirk / Prof. Dr.		
Dozent(en):	Meyer, Dirk / Prof. Dr.	<u>. rer. nat.</u>	
Institut(e):	Institut für Experimer	ntelle Physik	
Dauer:	1 Semester		
Qualifikationsziele /	Verinnerlichung und \	Verständnis physikalischer	Denkweisen und
Kompetenzen:	fachspezifischer Begr	iffsbildungen im Makro- un	d Mikrokosmos;
	Fähigkeit, physikalisc	he Vorgänge analytisch zu	erfassen, sie mit
	mathematischen Mitt	eln zu beschreiben und vor	herzusagen.
Inhalte:	Schwingunger	n und Wellen	
	 Elektrostatik ι 	und Magnetostatik	
	 Elektrodynam 	ik, elektromagnetische We	llen
	 Quantenmech 	nanisches Atommodell	
	 Wechselwirku 	ng elektromagnetischer Sti	rahlung mit Atomen
Typische Fachliteratur:	A. Recknagel: Physik (4 Bände: Mechanik/ Schwingungen und Wellen,		
	Wärmelehre / Elektriz	rität und Magnetismus / Opf	tik), Leipzig 1990
Lehrformen:	S1 (SS): Vorlesung (2		
	S1 (SS): Praktikum (4	SWS)	
Voraussetzungen für	Empfohlen:		
die Teilnahme:		nschaftler I, 2012-05-10	
Turnus:	jährlich im Sommerse	emester	
Voraussetzungen für	Voraussetzung für d	ie Vergabe von Leistungspi	unkten ist das Bestehen
die Vergabe von	der Modulprüfung. Di	e Modulprüfung umfasst:	
Leistungspunkten:	KA [120 min]		
	PVL: Erfolgreicher Abs	schluss des Praktikums	
	PVL müssen vor Prüfu	ıngsantritt erfüllt sein bzw.	nachgewiesen werden.
Leistungspunkte:	6		
Note:	Die Note ergibt sich e	entsprechend der Gewichtu	ng (w) aus folgenden(r)
	Prüfungsleistung(en):		
	KA [w: 1]		
Arbeitsaufwand:	Der Zeitaufwand betr	ägt 180h und setzt sich zus	sammen aus 90h
	Präsenzzeit und 90h S	Selbststudium. Letzteres se	etzt sich aus 60 h für die
	Vor- und Nachbereitu	ng der Lehrveranstaltung ເ	ınd 30 h für die
	Prüfungsvorbereitung	zusammen.	
	Vor- und Nachbereitu	ng der Lehrveranstaltung ບ	

Daten:	PPC. MA. Nr. 3134 Stand: 08.06.2012 📜 Start: WiSe 2013		
Modulname:	Problemorientierte Projektarbeit Chemie		
(englisch):	Thesis Project (Chemistry)		
Verantwortlich(e):	Alle Hochschullehrer der Fakultät für Chemie und Physik		
	<u>Mögel, Hans-Jörg / Prof. Dr.</u>		
Dozent(en):	Alle Hochschullehrer der Fakultät für Chemie und Physik		
Institut(e):	Fakultät für Chemie und Physik		
	Institut für Physikalische Chemie		
Dauer:	1 Semester		
Qualifikationsziele /	Selbständiges Lösen einer wissenschaftlichen Problemstellung unter		
Kompetenzen:	Anwendung von modernen experimentellen und theoretischen		
	Methoden		
Inhalte:			
Typische Fachliteratur:	Referateorgane, Datenbanken, Methodenhandbücher, typische		
	Fachliteratur in wissenschaftlichen Zeitschriften		
Lehrformen:	S1 (WS): Individuelle Projektarbeit / Seminar (2 SWS)		
	S1 (WS): Individuelle Projektarbeit / Praktikum (10 SWS)		
Voraussetzungen für	Abschluss von mindestens 5 Pflichtmodulen des Masterstudienganges		
die Teilnahme:	Chemie bzw. aller Komplexprüfungen des Diplomstudienganges Chemie		
Turnus:	jedes Semester		
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen		
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:		
Leistungspunkten:	AP: Schriftliche Ausarbeitung		
	AP: Vortrag mit Diskussion [10 bis 30 min]		
Leistungspunkte:	12		
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)		
	Prüfungsleistung(en):		
	AP: Schriftliche Ausarbeitung [w: 3]		
	AP: Vortrag mit Diskussion [w: 1]		
Arbeitsaufwand:	Der Zeitaufwand beträgt 360h und setzt sich zusammen aus 180h		
	Präsenzzeit und 180h Selbststudium. Letzteres umfasst die Abfassung		
	der schriftlichen Ausarbeitung.		

Daten:	PCRHEOL. MA. Nr. 3141 Stand: 23.07.2012 Start: WiSe 2012		
Modulname:	Rheologie und Struktur komplexer Fluide und Gele		
(englisch):	Rheology and Structure of Complex Fluids and Gels		
Verantwortlich(e):	Mögel, Hans-Jörg / Prof. Dr.		
Dozent(en):	Mögel, Hans-Jörg / Prof. Dr.		
	Schiller, Peter / PD Dr. rer. nat. habil.		
Institut(e):	Institut für Physikalische Chemie		
Dauer:	1 Semester		
Qualifikationsziele /	Vermittlung von Grundkenntnissen zur Rheologie und Struktur flüssiger		
Kompetenzen:	Dispersionen sowie zu relevanten Messverfahren		
Inhalte:	Rheologische Grundbegriffe, viskoelastisches und viskoplastisches		
	Verhalten von Dispersionen, Strukturbeschreibung in komplexen Fluiden		
	und Gelen, rheologische Messverfahren, optische Streu- und		
	Reflexionsverfahren zur Strukturbestimmung, scherinduzierte		
	Strukturen, theoretische Zusammenhänge zwischen		
	Partikelwechselwirkungen, Struktur und Rheologie, zeitabhängige		
	rheologische Eigenschaften, Modifizierung der Fließeigenschaften durch		
	chemische Additive		
Typische Fachliteratur:	C. W. Macosco, Rheology, VCH 1994; H. A. Barnes, J. F. Hutton, K.		
'	Walters, An Introduction to Rheology, Elsevier 1989;		
	R. G. Larson, The Structure and Rheology of Complex Fluids, Oxford		
	1999; W. Brown, Light Scattering, Oxford Sci. Publ. 1996		
Lehrformen:	S1 (WS): Vorlesung (3 SWS)		
	S1 (WS): Praktikum (2 SWS)		
Voraussetzungen für	Empfohlen:		
die Teilnahme:	Bachelorgrad in Chemie oder in einer anderen natur- oder		
	ingenieurwissenschaftlichen Fachrichtung		
Turnus:	jährlich im Wintersemester		
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen		
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:		
Leistungspunkten:	MP [20 bis 40 min]		
	PVL: Erfolgreiche Absolvierung des Praktikums		
	PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden.		
Leistungspunkte:	6		
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)		
	Prüfungsleistung(en):		
	MP [w: 1]		
Arbeitsaufwand:	Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 75h		
	Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und		
	Nachbereitung der Lehrveranstaltungen, die Lösung von		
	Übungsaufgaben und die Vorbereitung auf die Klausurarbeit.		
L	Jane		

Daten:	SILCHE. MA. Nr. 3139 Stand: 02.03.2010 Start: WiSe 2010		
Modulname:	Siliciumchemie - Von Grundlagen zu industriellen Anwendungen		
(englisch):	Silicon Chemistry - From Fundamentals to Industrial Applications		
Verantwortlich(e):	Kroke, Edwin / Prof. Dr.		
Dozent(en):	Kroke, Edwin / Prof. Dr.		
, ,	Müller, Armin / Prof. Dr.		
Institut(e):	Institut für Anorganische Chemie		
	Institut für Technische Chemie		
Dauer:	1 Semester		
Qualifikationsziele /	Die Studierenden sollen einen tieferen Einblick in die Molekül- und		
Kompetenzen:	Materialchemie des Siliciums erlangen. Es werden praktische und		
· ·	theoretische Kompetenzen vermittelt, die für die Durchführung der		
	Master- und Doktorarbeit in Bereichen wie Solar- und Halbleitersilicium		
	oder Silicone wichtig sind.		
Inhalte:	Siliciumrohstoffe; Grundlagen der Silikatchemie; elementares Silicium		
	(vom Ferrosilicium zu Halbleitersilicium); Synthese, Struktur und		
	Eigenschaften von Chlorsilanen, Carbosilanen, niederkoordinierte		
	Siliciumverbindungen (Silylene und ungesättigte Si-Verbindungen),		
	höher koordinierte Siliciumverbindungen, Polysiloxane, Sol-Gel-Technik,		
	Hybridmaterialien, (Poly)silazane, andere nicht-oxidische		
	Siliciumpolymere, Siliciumbasierte Hochleistungskeramik (SiC, Si ₃ N ₄ ,		
	Si/(B)/C/N), Praktische Einführung in einige präparative Methoden der		
	Siliciumchemie (Polymere, Festkörper). Solarsilicium (Bedeutung,		
	Herstellung), Photovoltaik, Solarzellen-Typen, industrielle Solarzellen-		
	Produktion; 1-2-tägige Exkursion zu einem Betrieb der Si-Chemie		
Typische Fachliteratur:	Originalliteratur		
Lehrformen:	S1 (WS): Vorlesung (2 SWS)		
	S1 (WS): Seminar (1 SWS)		
	S1 (WS): Praktikum (2 SWS)		
Voraussetzungen für	Empfohlen:		
die Teilnahme:	Allgemeine, Anorganische und Organische Chemie, 2009-09-02		
Turnus:	jährlich im Wintersemester		
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen		
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:		
Leistungspunkten:	KA [60 bis 120 min]		
	PVL: Praktikumsschein, Seminarvortrag, Exkursion		
	PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden.		
Leistungspunkte:	6		
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)		
	Prüfungsleistung(en):		
	KA [w: 1]		
Arbeitsaufwand:	Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 75h		
	Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und		
	Nachbereitung der Lehrveranstaltung, sowie des Seminarvortrages.		

Daten:	ORCH2. BA. Nr. 162 Stand: 25.01.2015 📜 Start: SoSe 2015
Modulname:	Spezielle Reaktionen und Mechanismen der Organischen Chemie
(englisch):	Special Reactions and Mechanisms of Organic Chemistry
Verantwortlich(e):	Mazik, Monika / Prof. Dr.
Dozent(en):	Mazik, Monika / Prof. Dr.
Institut(e):	Institut für Organische Chemie
Dauer:	1 Semester
Qualifikationsziele /	Die Studierenden erwerben ein erweitertes und vertieftes Verständnis
Kompetenzen:	von wichtigen Reaktionsklassen und molekularen Mechanismen der
	organischen Chemie. Sie werden fortgeschrittene organisch-chemische Synthesemethoden und Reinigungsoperationen praktisch durchführen können sowie zur Interpretation von spektroskopischen Daten organischer Verbindungen fähig sein.
Inhalte:	Reaktive Zwischenstufen und spezifizierte Betrachtung von Reaktionsmechanismen (Konkurrenzverhalten und Einflussparameter, sterischer Verlauf und Produktselektivität). Wittig-Reaktion, Petersen- Olefinierung, Hydroborierung, präparativ bedeutsame metallorganische Reaktionen und Umlagerungsreaktionen. Synthese und spektroskopische Charakterisierung spezieller organischer
	Verbindungen.
Typische Fachliteratur:	S. Hauptmann: Reaktionen und Mechanismus in der organischen Chemie, Teubner-Studienbücher; R. Brückner: Reaktionsmechanismen, Spektrum Akademischer Verlag. N. Krause: Metallorganische Chemie, Spektrum Akademischer Verlag. L. F. Tietze, Th. Eicher: Reaktionen und Synthese im organisch-chemischen Praktikum und Forschungslaboratorium, Thieme.
Lehrformen:	S1 (SS): Vorlesung (2 SWS)
Letinorine in	S1 (SS): Übung (1 SWS) S1 (SS): Praktikum (7 SWS)
Voraussetzungen für	Empfohlen:
die Teilnahme:	Organische Chemie spezieller Stoffklassen, 2012-07-02
Turnus:	jährlich im Sommersemester
Voraussetzungen für die Vergabe von Leistungspunkten:	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: in Prüfungsvariante 1: MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPOC. [45 bis 60 min]
	PVL: Übungsaufgaben mit Seminarvortrag oder schriftlicher Ausarbeitung PVL: Abschluss Praktikum PVL: Schriftliches Abtestat [60 min]
	oder in Prüfungsvariante 2: KA [90 min] PVL: Übung mit Diskussionsbeiträgen, erfolgreich gehaltener Seminarvortrag mit anschließender Fachdisskusion oder als Äquivalent eine schriftliche Ausarbeitung über ein Thema des Lehrstoffs PVL: Erfolgreicher Abschluss des Praktikums (bestehend aus 6 protokollierten Präparatestufen, davon mindestens ein Mehrstufenpräparat) Prüfungsvariante 1: Für Studierende des Diplomstudienganges Chemie. Prüfungsvariante 2: Für Studierende aller Studiengänge außer dem Diplomstudiengang Chemie. PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden.
Leistungspunkte:	9

Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): in Prüfungsvariante 1:
	MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPOC. [w: 1] oder
	in Prüfungsvariante 2: KA [w: 1]
Arbeitsaufwand:	Der Zeitaufwand beträgt 270h und setzt sich zusammen aus 150h Präsenzzeit und 120h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltungen sowie die Prüfungsvorbereitung.

Daten:	ORCHWP1. MA. Nr. 3144	Stand: 08.06.2012 3	Start: WiSe 2012
Modulname:	Spezielle Stoffsynthesen der Organischen Chemie		
(englisch):	Special Syntheses of Compounds in Organic Chemistry		
Verantwortlich(e):	Mazik, Monika / Prof. D		
Dozent(en):	Pollex, Rolf / Dr.		
Institut(e):	Institut für Organische	Chemie	
Dauer:	1 Semester	<u> </u>	
Qualifikationsziele /		in der Lage, stoffklassen-s	nezifische
Kompetenzen:		vanter Verbindungsbeispie	-
Kompetenzen.		offbereich zu entwickeln. S	
		turmerkmale und Eigensch	
Inhalte:		<u> </u>	
innaite:	1 -	e Klassen an Natur- und Wi	
		drate, Nukleobasen, Alkalo	-
		arbstoffe, Tenside, Makroc	-
	_ I	elle stoffliche Eigenschafte	n der
Toriosha Fashira	Verbindungsklassen.	0	A Casasal I Citalitasa
Typische Fachliteratur:		Organic Synthesis, VCH; J.	
		enningen, T. Nöbel, H. Schi	
		ganischen Synthese, Wiley	
		ch, F. Haunert, WR. Krahn	
		Organic Synthesis Workbo	
		el; B. Dietrich, P. Viout, JN	-
	1	derich, P. Stang, R. R. Tykı	
	1 .	stry: Strategies for Macroc	ycle Synthesis, Wiley-
	VCH.		
Lehrformen:	S1 (WS): Vorlesung (2	-	
	S1 (WS): Übung (1 SWS	5)	
Voraussetzungen für	Empfohlen:		
die Teilnahme:	Moderne Reagenzien u	nd Methoden der organisc	<u>hen Synthese,</u>
	<u> 2012-06-08</u>		
	Prinzipien der organisc	hen Synthese, 2012-07-03	_
Turnus:	jährlich im Winterseme	ester	
Voraussetzungen für	Voraussetzung für die	Vergabe von Leistungspu	nkten ist das Bestehen
die Vergabe von		Modulprüfung umfasst:	
Leistungspunkten:	KA [90 min]		
		Übung mit Diskussionsbei	trägen
		ıgsantritt erfüllt sein bzw. r	=
Leistungspunkte:	5		
Note:	Die Note ergibt sich en	tsprechend der Gewichtun	g (w) aus folgenden(r)
	Prüfungsleistung(en):	espreement der dementan	g (W) das loigenaem (I)
	KA [w: 1]		
 Arbeitsaufwand:		gt 150h und setzt sich zus	ammen aus 45h
mi belesaarwana.		gt 13011 dila setzt sich zusa Selbststudium. Letzteres ui	
		rveranstaltung sowie die V	
	_	i veralistaliturig sowie die v	orbereitung auf den
	Seminarvortrag.		

Daten:	ANCH1. BA. Nr. 161	Stand: 02.07.2012 🖔	Start: WiSe 2012
Modulname:	Stöchiometrisches R Stoffanalyse	echnen und qualitative	anorganische
(englisch):		litative Inorganic Chemica	al Analysis
Verantwortlich(e):	Kroke, Edwin / Prof. Dr.		,
Dozent(en):			
Institut(e):	Institut für Anorganisch	<u>ie Chemie</u>	
Dauer:	1 Semester		
Qualifikationsziele /	Verständnis der Grundl	agen der qualitativ-analyt	ischen anorganischen
Kompetenzen:	Stoffchemie. Die Studie	erenden sollen anhand vor	n einfachen ¯
	Einzelanalysen bis hin a	zu komplexeren Gesamt-,	Legierungs- und
	Mineralanalysen einen	Einstieg in die praktische	anorganische Chemie
	finden. Hauptziel ist die	e Erlangung fundamentale	er Erfahrungen bezüglich
	der Eigenschaften und	Reaktionsweisen anorgan	ischer Verbindungen.
Inhalte:	1	hemische Grundoperation	
		ifugieren, Waschen, (Um)	kristallisieren,
	Abrauchen.		
	· · · · · · · · · · · · · · · · · · ·	nmenfärbung, Boraxperle	, Magnesia-Rinne,
	Glühröhrchen.	saabuusias. Halamanida Co	ilfid Culfot Combonet
		nachweise: Halogenide, Su	illia, Sulfat, Carbonat,
	Silicat, Nitrat, P		
	I .	nachweise: Ag, Hg, Pb, Bi, n, Zn, Ca, Sr, Ba, Mg, Na,	_
Typische Fachliteratur:		ch der analytischen und pr	
	r	; Hirzel; E. Riedel: Anorga	<u> </u>
	Gruyter.	, Illizei, E. Medel. Allorgai	mische Chemie, de
Lehrformen:	S1 (WS): Übung (2 SWS	3)	
Letinorinen.	\$1 (W\$): Praktikum (8 \$	-	
Voraussetzungen für	Empfohlen:	31137	
die Teilnahme:	Kenntnisse der Allgeme	einen Chemie.	
Turnus:	iährlich im Winterseme		
Voraussetzungen für	U	Vergabe von Leistungspu	ınkten ist das Bestehen
die Vergabe von	der Modulprüfung. Die		
Leistungspunkten:	KA [90 bis 120 min]	. 5	
	PVL: Übungsaufgaben		
	PVL: Erfolgreicher Absc	hluss des Praktikums (Ant	testate, Protokolle)
	PVL müssen vor Prüfun	gsantritt erfüllt sein bzw.	nachgewiesen werden.
Leistungspunkte:	7		
Note:	Die Note ergibt sich en	tsprechend der Gewichtur	ng (w) aus folgenden(r)
	Prüfungsleistung(en):		
	KA [w: 1]		
Arbeitsaufwand:		gt 210h und setzt sich zus	
		lbststudium. Letzteres un	
	1	rveranstaltung, die Lösun	_
	Ubungsaufgaben sowie	die Prüfungsvorbereitung	J.

Daten:	TOXPHYS. MA. Nr. 3028 Stand: 12.08.2009 🖫	Start: WiSe 2009	
Modulname:	Stressphysiologie und Ökotoxikologie		
(englisch):	Stress Physiology and Ecotoxicology		
Verantwortlich(e):	Heilmeier, Hermann / Prof. (apl.) Dr.		
Dozent(en):	Heilmeier, Hermann / Prof. (apl.) Dr.		
	Altenburger, Rolf / PD Dr.		
	Herklotz, Kurt / DiplChem.		
Institut(e):	Institut für Biowissenschaften		
	Umweltforschungszentrum Leipzig-Halle GmbH (UF	<u>Z)</u>	
Dauer:	1 Semester		
Qualifikationsziele /	Die Studenten erhalten vertiefte Kenntnisse über di	ie grundlegenden	
Kompetenzen:	physiologischen Anpassungsreaktionen und Schadr Abwehr toxischer Substanzen (z.B. Spurenelement Xenobiotika). Daneben sollen toxikologische Beurte eingeführt werden. Durch ein begleitendes Praktiku zur qualitativen und quantitativen Erfassung und Be physiologischer Mechanismen erprobt.	e, Luftschadstoffe, ilungsinstrumente ım werden Methoden	
Inhalte:	1. Toxikologische Konzepte: Stellvertreterorganismen, Biotestbatterien, Expositi Effektanalyse, Schädlichkeits- und Risikobeurteilung 2. Physiologie der Anpassungsreaktionen und Schad Biomembranintegrität, Stoffwechselreaktionen (Enz Photosynthese, Redoxprozesse), Metabolitproduktionsolutes, Glutathion), Stresshormone (Abscisinsäure)	g dmechanismen: zymaktivität, on (compatible	
Typische Fachliteratur:	Schulze et al.: Plant Ecology; Van Leeuwen und Ver Assessment of Chemicals: An Introduction	meire: Risk	
Lehrformen:	S1 (WS): Seminaristisch / Vorlesung (2 SWS) S1 (WS): Praktikum (1 SWS)		
Voraussetzungen für	Empfohlen:		
die Teilnahme:	Bachelorgrad in Chemie, in Angewandter Naturwiss Geoökologie oder in einer anderen natur- oder ingenieurwissenschaftlichen Fachrichtung	enschaft, in	
Turnus:	jährlich im Wintersemester		
Voraussetzungen für die Vergabe von Leistungspunkten:	Voraussetzung für die Vergabe von Leistungspunk der Modulprüfung. Die Modulprüfung umfasst: KA [90 min] PVL: Testierte Versuchsprotokolle aus dem Praktiku PVL müssen vor Prüfungsantritt erfüllt sein bzw. nach	ım	
Leistungspunkte:	4		
Note:	Die Note ergibt sich entsprechend der Gewichtung Prüfungsleistung(en): KA [w: 1]	(w) aus folgenden(r)	
Arbeitsaufwand:	Der Zeitaufwand beträgt 120h und setzt sich zusammen aus 45h Präsenzzeit und 75h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Vorlesungen und Praktika und die Klausurvorbereitung.		

Daten:	STCH. DIPL. Nr. 145a Stand: 26.03.2015 📜 Start: SoSe 2016		
Modulname:	Studienarbeit Chemie mit Kolloquium		
(englisch):	Thesis with Oral Examination		
Verantwortlich(e):	Alle Hochschullehrer der Fakultät für Chemie und Physik		
	Mögel, Hans-Jörg / Prof. Dr.		
Dozent(en):			
Institut(e):	Fakultät für Chemie und Physik		
	Institut für Physikalische Chemie		
Dauer:	1 Semester		
Qualifikationsziele /	Die Studierenden sollen die Fähigkeit erwerben, an Hand einer		
Kompetenzen:	konkreten Aufgabenstellung aus einem Arbeitsgebiet der Chemie unter		
	forschungsnahen Bedingungen wissenschaftliche Methoden		
	anzuwenden, ihre Ergebnisse als wissenschaftliche Arbeit zu		
	präsentieren und zu verteidigen.		
Inhalte:	Konzeption eines Arbeitsplanes, Einarbeiten in die Literatur, Erarbeitung		
	der anzuwendenden Methoden, Durchführung und Auswertung der		
	praktischen bzw. theoretischen Arbeiten, Diskussion der Ergebnisse,		
	Erstellen der Thesis, Verteidigung der Thesis.		
Typische Fachliteratur:	H. F. Ebel, C. Bliefert: Schreiben und Publizieren in den		
	Naturwissenschaften, Wiley-VCH; W. E. Russey, H. F. Ebel, C. Bliefert:		
	How to write a successful Science Thesis, Wiley-VCH.		
	Themenspezifische Fachliteratur wird vom Betreuer der Bachelorarbeit		
	benannt.		
Lehrformen:	S1 (SS): Abschlussarbeit		
	S1 (SS): Laborarbeit - Laborarbeit und eine ganztägige Anleitung zu		
	wissenschaftlichen Arbeiten in einer Forschergruppe der chemischen		
	Institute oder in einer Einrichtung außerhalb der Hochschule wie z. B.		
	wissenschaftliche Institute oder Industriebetriebe mit Zustimmung des		
	Vorsitzenden des Prüfungsausschusses. / Praktikum (15 SWS)		
Voraussetzungen für	Abschluss aller Komplexprüfungen		
die Teilnahme:			
Turnus:	ständig		
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen		
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:		
Leistungspunkten:	AP*: Schriftliche Ausarbeitung der Thesis		
	AP*: Verteidigung		
	* Bei Modulen mit mehreren Prüfungsleistungen muss diese		
	Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0)		
	bewertet sein.		
Leistungspunkte:			
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)		
	Prüfungsleistung(en):		
	AP*: Schriftliche Ausarbeitung der Thesis [w: 3]		
	AP*: Verteidigung [w: 1]		
	* Bei Modulen mit mehreren Prüfungsleistungen muss diese		
	Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0)		
Aula alta a di Constant	bewertet sein.		
Arbeitsaufwand:	Der Zeitaufwand beträgt 360h und setzt sich zusammen aus 225h		
	Präsenzzeit und 135h Selbststudium. Letzteres umfasst die Niederschrift		
	der Thesis und die Vorbereitung auf die Verteidigung.		

Technical Catalytics	Daten:	TNCHWP. BA. Nr. 163 Stand: 01.07.2012 Start: WiSe 2014		
(englisch): Technical Catalytics	Modulname:	<u> </u>		
Verantwortlich(e): Bertau, Martin / Prof. Dr. Institut(e): Institut(e	(englisch):			
Institut(e):	Verantwortlich(e):	•		
Institut(e):	` '	·		
Dauer: 2 Semester Qualifikationsziele / Die Studierenden erlangen Kenntnisse über die technische Realisierung von katalytischen Verfahren und deren Einbindung in Produktionsprozesse sowie über die Anwendungsfelder klassischer Katalysatoren und Biokatalysatoren. Inhalte: Grundlagen der Katalyse in anorganisch-, organisch-technischen und biotechnologischen Verfahren in der industriellen Chemie: grundlegende Prinzipien der homogenen und der heterogenen Katalysse sowie der industriellen Biokatalyse, Übergangsmetallkatalyse, Funktionsweisen von homogenen und heterogenen Übergangsmetallkatalysstoren, Lewisund Brönstedt-Säuren und -Basen, Vor- und Nachteile der homogenen und heterogenen Katalyse, Asymmetrische Katalysse van Nemodungsbeispiele für (bio-)katalytische Verfahren in der industriellen Chemie, ökonomische und ökologische Aspekte (bio-)katalytischer Verfahren, (Bio-) Katalysatorstabilität, (Bio-)Katalysatorrecycling, Effizienzvergleich und Einsatzgebiete klassischer Katalysatorrecycling, Effizienzvergleich und Einsatzgebiete klassischer Katalysatorren und Biokatalysatoren Typische Fachliteratur: M. Baerns et al., Technische Chemie, Wiley-VCH; HJ. Arpe, Industrielle Organische Chemie, Wiley-VCH; G. E. Jeromin, M. Bertau, Bioorganikum, Wiley-VCH. Lehrformen: S1 (WS): Vorlesung (2 SWS) S2 (SS): Praktikum (3 SWS) Empfohlen: Kenntnisse, wie sie in den Modulen "Grundlagen der Technischen Chemie" und "Industrielle Chemie" vermittelt werden. ährlich im Wintersemester Voraussetzungen für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: K4 (50 is 120 min] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Ar (50 is 120 min] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewer				
Oualifikationsziele / Kompetenzen: Die Studierenden erlangen Kenntnisse über die technische Realisierung von katalytischen Verfahren und deren Einbindung in Produktionsprozesse sowie über die Anwendungsfelder klassischer Katalysatoren und Biokatalysatoren. Inhalte: Grundlagen der Katalyse in anorganisch-, organisch-technischen und biotechnologischen Verfahren in der industriellen Chemie: grundlegende Prinzipien der homogenen und der heterogenen Katalyse sowie der industriellen Biokatalyse, Übergangsmetallkatalyse, Funktionsweisen von homogenen und heterogenen Übergangsmetallkatalyse, Lewisund Brönstedt-Säuren und -Basen, Vor- und Nachteile der homogenen und heterogenen Katalyse, Asymmetrische Katalyse, Anwendungsfelder und Anwendungsbeispiele für (bio-)katalytische Verfahren in der industriellen Chemie, ökonomische und ökologische Aspekte (bio-)katalytischer Verfahren, (Bio-) Katalysatorstabilität, (Bio-)Katalysatorrecycling, Effizienzvergleich und Einsatzgebiete klassischer Katalysatorrecycling, Effizienzvergleich und Einsatzgebiete klassischer Katalysatoren und Biokatalysatoren und Biokatalysischer Verfahren in der industrielle Organische Chemie, Wiley-VCH; G. E. Jeromin, M. Bertau, Bioorganikum, Wiley-VCH. Lehrformen: 51 (WS): Vorlesung (2 SWS) 52 (SS): Praktikum (3 SWS) Empfohlen: Kenntnisse, wie sie in den Modulen "Grundlagen der Technischen Chemie" und "Industrielle Chemie" vermittelt werden. Bährlich im Wintersemester Voraussetzun	Dauer:			
kompetenzen: von katalytischen Verfahren und deren Einbindung in Produktionsprozesse sowie über die Anwendungsfelder klassischer Katalysatoren und Biokatalysatoren. Inhalte: Grundlagen der Katalyse in anorganisch-, organisch-technischen und biotechnologischen Verfahren in der industriellen Chemie: grundlegende Prinzipien der homogenen und der heterogenen Katalyse sowie der industriellen Biokatalyse, Übergangsmetallkatalyse, Funktionsweisen von homogenen und heterogenen Übergangsmetallkatalysatoren, Lewisund Brönstedt-Säuren und -Basen, Vor- und Nachteile der homogenen und heterogenen Katalyse, Asymmetrische Katalyse, Anwendungsfelder und Anwendungsbeispiele für (bio-)katalytische Verfahren in der industriellen Chemie, ökonomische und ökologische Aspekte (bio-)katalytischer Verfahren, (Bio-) Katalysatorstabilität, (Bio-)Katalysatorrevzgliech und Einsatzgebiete klassischer Katalysatorrevzgliech, und Einsatzgebiete klassischer Katalysatorrevzgliech, und Einsatzgebiete klassischer Katalysatoren und Biokatalysatoren Typische Fachliteratur: M. Baerns et al., Technische Chemie, Wiley-VCH; HJ. Arpe, Industrielle Organische Chemie, Wiley-VCH; G. E. Jeromin, M. Bertau, Bioorganikum, Wiley-VCH. Lehrformen: 51 (W5): Vorlesung (2 SW5) 52 (S5): Praktikum (3 SW5) Voraussetzungen für die Teinlahme: Kenntnisse, wie sie in den Modulen "Grundlagen der Technischen Chemie" und "Industrielle Chemie" vermittelt werden. ährlich im Wintersemester Voraussetzungen für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: KA* [60 bis 120 min] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 75h P	Oualifikationsziele /	Die Studierenden erlangen Kenntnisse über die technische Realisierung		
Produktionsprozesse sowie über die Anwendungsfelder klassischer Katalysatoren und Biokatalysatoren. Grundlagen der Katalyse in anorganisch-, organisch-technischen und biotechnologischen Verfahren in der industriellen Chemie: grundlegende Prinzipien der homogenen und der heterogenen Katalyse sowie der industriellen Biokatalyse. Übergangsmetallkatalyse, Funktionsweisen von homogenen und heterogenen Übergangsmetallkatalysatoren, Lewis- und Brönsteth-Säuren und -Basen, Vor- und Nachteile der homogenen und heterogenen Katalyse, Asymmetrische Katalyse, Anwendungsfelder und Anwendungsbeispiele für (bio-)katalytische Verfahren in der industriellen Chemie, ökonomische und ökologische Aspakte (bio-)katalytischer Verfahren, (Bio-) katalysatorstabilität, (Bio-)katalysatorrevcyling, Effizienzvergleich und Einsatzgebiete klassischer Katalysatorrevcyling, Effizienzvergleich und Einsatzgebiete klassischer Katalysatoren und Biokatalysatoren Typische Fachliteratur: M. Baerns et al., Technische Chemie, Wiley-VCH; HJ. Arpe, Industrielle Organische Chemie, Wiley-VCH; G. E. Jeromin, M. Bertau, Bioorganikum, Wiley-VCH. Lehrformen: 51 (W5): Vorlesung (2 SW5) 52 (SS): Praktikum (3 SW5) Empfohlen: Kenntnisse, wie sie in den Modulen "Grundlagen der Technischen Chemie" und "Industrielle Chemie" vermittelt werden. Turnus: öhrlich im Wintersemester Voraussetzungen für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: KA* [60 bis 120 min] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. 6 Note: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistungen bestanden bzw. mit mindestens "ausreichend" (4,0)	`			
Inhalte: Grundlagen der Katalyse in anorganisch-, organisch-technischen und biotechnologischen Verfahren in der industriellen Chemie: grundlegende Prinzipien der homogenen und der heterogenen Katalyse sowie der industriellen Biokatalyse, Übergangsmetallkatalyse, Funktionsweisen von homogenen und heterogenen Übergangsmetallkatalysatoren, Lewisund Brönstedt-Säuren und -Basen, Vor- und Nachteile der homogenen und heterogenen Katalyse, Asymmetrische Katalyse, Anwendungsfelder und Anwendungsbeispiele für (bio-)katalytische Verfahren in der industriellen Chemie, ökonomische und ökologische Aspekte (bio-)katalytischer Verfahren, (Bio-) Katalysatorstabilität, (Bio-)Katalysatorrevcycling, Effizienzvergleich und Einsatzgebiete klassischer Katalysatoren und Biokatalysatoren Typische Fachliteratur: Sarne et al., Technische Chemie, Wiley-VCH; HJ. Arpe, Industrielle Organische Chemie, Wiley-VCH; G. E. Jeromin, M. Bertau, Bioorganikum, Wiley-VCH. Lehrformen: Sarne et al., Technische Chemie Wiley-VCH; HJ. Arpe, Industrielle Organische Chemie, Wiley-VCH; G. E. Jeromin, M. Bertau, Bioorganikum, Wiley-VCH. Lehrformen: Sarne et al., Technische Chemie, Wiley-VCH; HJ. Arpe, Industrielle Chemie Wiley-VCH; G. E. Jeromin, M. Bertau, Bioorganikum, Wiley-VCH. Sarne et al., Technische Chemie Wiley-VCH; HJ. Arpe, Industrielle Chemie Wiley-VCH; G. E. Jeromin, M. Bertau, Bioorganikum, Wiley-VCH; G. E. Je		1		
Inhalte: Grundlagen der Katalyse in anorganisch-, organisch-technischen und biotechnologischen Verfahren in der industriellen Chemie: grundlegende Prinzipien der homogenen und der heterogenen Katalyse sowie der industriellen Biokatalyse, Übergangsmetallkatalyse, Funktionsweisen von homogenen und heterogenen Übergangsmetallkatalysakoren, Lewisund Brönstedt-Säuren und -Basen, Vor- und Nachteile der homogenen und heterogenen Katalyse, Asymmetrische Katalyse, Anwendungsfelder und Anwendungsbeispiele für (bio-)katalytische Verfahren in der industriellen Chemie, ökonomische und ökologische Aspekte (bio-)katalytischer Verfahren, (Bio-) Katalysatorstabilität, (Bio-)katalytischer Verfahren, (Bio-) Katalysatorstabilität, (Bio-)katalytischer Verfahren, (Bio-) Katalysatoren ber Katalysatoren und Biokatalysatoren Typische Fachliteratur: M. Baerns et al., Technische Chemie, Wiley-VCH; HJ. Arpe, Industrielle Organische Chemie, Wiley-VCH; G. E. Jeromin, M. Bertau, Bioorganikum, Wiley-VCH. Lehrformen: S1 (WS): Vorlesung (2 SWS) S2 (55): Praktikum (3 SWS) Voraussetzungen für die Teilnahme: Kenntnisse, wie sie in den Modulen "Grundlagen der Technischen Chemie" und "Industrielle Chemie" vermittelt werden. ährlich im Wintersemester Voraussetzungen für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: KA* [60 bis 120 min] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Leistungspunkte: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistungen): KA* [w: 2] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 75h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vo		·		
biotechnologischen Verfahren in der industriellen Chemie: grundlegende Prinzipien der homogenen und der heterogenen Katalyse sowie der industriellen Biokatalyse, Übergangsmetallkatalyse, Funktionsweisen von homogenen und heterogenen Übergangsmetallkatalysatoren, Lewisund Brönstedt-Säuren und -Basen, Vor- und Nachteile der homogenen und heterogenen Katalyse, Asymmetrische Katalyse, Anwendungsfelder und Anwendungsbeispiele für (bio-)katalytische Verfahren in der industriellen Chemie, ökonomische und ökologische Aspekte (bio-)katalytischer Verfahren, (Bio-) Katalysatorstabilität, (Bio-)katalysatorrecycling, Effizienzvergleich und Einsatzgebiete klassischer Katalysatoren und Biokatalysatoren Typische Fachliteratur: M. Baerns et al., Technische Chemie, Wiley-VCH; HJ. Arpe, Industrielle Organische Chemie, Wiley-VCH; G. E. Jeromin, M. Bertau, Bioorganikum, Wiley-VCH. SI (WS): Vorlesung (2 SWS) SZ (SS): Praktikum (3 SWS) Empfohlen: Kenntnisse, wie sie in den Modulen "Grundlagen der Technischen Chemie" und "Industrielle Chemie" vermittelt werden. Turnus: Jährlich im Wintersemester Voraussetzungen für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: KA* [60 bis 120 min] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 75h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltungen, die schriftliche Ausarbeitung	Inhalte:			
Prinzipien der homogenen und der heterogenen Katalyse sowie der industriellen Biokatalyse, Übergangsmetallkatalyse, Funktionsweisen von homogenen und heterogenen Übergangsmetallkatalysatoren, Lewisund Brönstedt-Säuren und -Basen, Vor- und Nachteile der homogenen und heterogenen Katalyse, Asymmetrische Katalyse, Anwendungsfelder und Anwendungsbeispiele für (bio-)katalytische Verfahren in der industriellen Chemie, ökonomische und ökologische Aspekte (bio-)katalytischer Verfahren, (Bio-) Katalysatorstabilität, (Bio-)Katalysatorecycling, Effizienzvergleich und Einsatzgebiete klassischer Katalysatoren und Biokatalysatoren Typische Fachliteratur: M. Baerns et al., Technische Chemie, Wiley-VCH; HJ. Arpe, Industrielle Organische Chemie, Wiley-VCH; G. E. Jeromin, M. Bertau, Bioorganikum, Wiley-VCH. S1 (WS): Vorlesung (2 SWS) S2 (SS): Praktikum (3 SWS) Voraussetzungen für die Teilnahme: Kenntnisse, wie sie in den Modulen "Grundlagen der Technischen Chemie" und "Industrielle Chemie" vermittelt werden. Turnus: Jährlich im Wintersemester Voraussetzungen für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: KA* (60 bis 120 min] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Leistungspunkte: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistungen): KA* (w: 2) AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 75h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltungen, die schriftliche Ausarbeitung				
industriellen Biokatalyse, Übergangsmetallkatalyse, Funktionsweisen von homogenen und heterogenen Übergangsmetallkatalysatoren, Lewisund Brönstedt-Säuren und -Basen, Vor- und Nachteile der homogenen und heterogenen Katalyse, Asymmetrische Katalyse, Anwendungsfelder und Anwendungsbeispiele für (bio-)katalytische Verfahren in der industriellen Chemie, ökonomische und ökologische Aspekte (bio-)katalytischer Verfahren, (Bio-) Katalysatorstabilität, (Bio-)Katalysatorrecycling, Effizienzvergleich und Einsatzgebiete klassischer Katalysatoren und Biokatalysatoren Typische Fachliteratur: M. Baerns et al., Technische Chemie, Wiley-VCH; HJ. Arpe, Industrielle Organische Chemie, Wiley-VCH; G. E. Jeromin, M. Bertau, Bioorganikum, Wiley-VCH. Lehrformen: 51 (WS): Vorlesung (2 SWS) 52 (SS): Praktikum (3 SWS) Empfohlen: Kenntnisse, wie sie in den Modulen "Grundlagen der Technischen Chemie" und "Industrielle Chemie" vermittelt werden. ährlich im Wintersemester Voraussetzungen für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: Ka* (60 bis 120 min) AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Leistungspunkte: 6 Note: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung en mit mehreren Prüfungsleistungen muss diese Prüfungsleistung mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 75h Präsenzzeit und 105h Selbstsudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltungen, die schriftliche Ausarbeitung		1		
von homogenen und heterogenen Übergangsmetallkatalysatoren, Lewis- und Brönstedt-Säuren und -Bäsen, Vor- und Nachteile der homogenen und heterogenen Katalyse, Asymmetrische Katalyse, Anwendungsfelder und Anwendungsbeispiele für (bio-)katalytische Verfahren in der industriellen Chemie, ökonomische und ökologische Aspekte (bio-)katalytischer Verfahren, (Bio-) Katalysatorstebilität, (Bio-)Katalysatorrecycling, Effizienzvergleich und Einsatzgebiete klassischer Katalysatoren und Biokatalysatoren Typische Fachliteratur: M. Baerns et al., Technische Chemie, Wiley-VCH; HJ. Arpe, Industrielle Organische Chemie, Wiley-VCH; G. E. Jeromin, M. Bertau, Bioorganikum, Wiley-VCH. Lehrformen: 51 (WS): Vorlesung (2 SWS) 52 (SS): Praktikum (3 SWS) Voraussetzungen für die Teilnahme: Kenntnisse, wie sie in den Modulen "Grundlagen der Technischen Chemie" und "Industrielle Chemie" vermittelt werden. Turnus: Turnus: Turnus: Voraussetzungen für die Vergabe von Leistungspunkten: Ka* [60 bis 120 min] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Leistungspunkte: 6 Note: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung heit ber die Ergebnisse der Praktikumsaufgabe [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 75h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltungen, die schriftliche Ausarbeitung		1 '		
und Brönstedt-Säuren und -Basen, Vor- und Nachteile der homogenen und heterogenen Katalyse, Asymmetrische Katalyse, Anwendungsfelder und Anwendungsbeispiele für (bio-)katalytischer Verfahren in der industriellen Chemie, ökonomische und ökologische Aspekte (bio-)katalytischer Verfahren, (Bio-) Katalysatorstabilität, (Bio-)Katalysatorrecycling, Effizienzvergleich und Einsatzgebiete klassischer Katalysatoren und Biokatalysatoren und Einsatzgebiete klassischer Katalysatoren und Biokatalysatoren und Einsatzgebiete Organische Chemie, Wiley-VCH; G. E. Jeromin, M. Bertau, Bioorganikum, Wiley-VCH. Lehrformen: S1 (WS): Vorlesung (2 SWS) S2 (SS): Praktikum (3 SWS) Empfohlen: Kentnisse, wie sie in den Modulen "Grundlagen der Technischen Chemie" und "Industrielle Chemie" vermittelt werden. Ährlich im Wintersemester Voraussetzungen für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: KA* [60 bis 120 min] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Leistungspunkte: 6 Note: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): KA* [w: 2] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleis				
und heterogenen Katalyse, Asymmetrische Katalyse, Anwendungsfelder und Anwendungsbeispiele für (bio-)katalytische Verfahren in der industriellen Chemie, ökonomische und ökologische Aspekte (bio-)katalytischer Verfahren, (Bio-) Katalysatorstabilität, (Bio-)Katalysatorrecycling, Effizienzvergleich und Einsatzgebiete klassischer Katalysatoren und Biokatalysatoren Typische Fachliteratur: M. Baerns et al., Technische Chemie, Wiley-VCH; HJ. Arpe, Industrielle Organische Chemie, Wiley-VCH; G. E. Jeromin, M. Bertau, Bioorganikum, Wiley-VCH. Lehrformen: S1 (WS): Vorlesung (2 SWS) S2 (SS): Praktikum (3 SWS) Voraussetzungen für die Teilnahme: Empfohlen: Kenntnisse, wie sie in den Modulen "Grundlagen der Technischen Chemie" und "Industrielle Chemie" vermittelt werden. Turnus: Jährlich im Wintersemester Voraussetzungen für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: KA* [60 bis 120 min] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Leistungspunkte: 6 Note: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): KA* [w: 2] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 75h Präsenszzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltungen, die schriftliche Ausarbeitung				
und Anwendungsbeispiele für (bio-)katalytische Verfahren in der industriellen Chemie, ökonomische und ökologische Aspekte (bio-)katalytischer Verfahren, (Bio-) Katalysatorstabilität, (Bio-)Katalysatorrecycling, Effizienzvergleich und Einsatzgebiete klassischer Katalysatoren und Biokatalysatoren Typische Fachliteratur: M. Baerns et al., Technische Chemie, Wiley-VCH; HJ. Arpe, Industrielle Organische Chemie, Wiley-VCH; G. E. Jeromin, M. Bertau, Bioorganikum, Wiley-VCH. S1 (WS): Vorlesung (2 SWS)		<u> </u>		
industriellen Chemie, ökonomische und ökologische Aspekte (bio-)katalytischer Verfahren, (Bio-) Katalysatorstabilität, (Bio-)Katalysatorrecycling, Effizienzvergleich und Einsatzgebiete klassischer Katalysatoren und Biokatalysatoren Typische Fachliteratur: M. Baerns et al., Technische Chemie, Wiley-VCH; HJ. Arpe, Industrielle Organische Chemie, Wiley-VCH; G. E. Jeromin, M. Bertau, Bioorganikum, Wiley-VCH. Lehrformen: S1 (WS): Vorlesung (2 SWS) S2 (SS): Praktikum (3 SWS) Empfohlen: Kenntnisse, wie sie in den Modulen "Grundlagen der Technischen Chemie" und "Industrielle Chemie" vermittelt werden. Turnus: Voraussetzungen für die Vergabe von Leistungspunkten: Ka* [60 bis 120 min] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Leistungspunkte: 6 Note: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): KA* [w: 2] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 75h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltungen, die schriftliche Ausarbeitung				
(bio-)katalytischer Verfahren, (Bio-) Katalysatorstabilität, (Bio-)Katalysatorrecycling, Effizienzvergleich und Einsatzgebiete klassischer Katalysatoren und Biokatalysatoren Typische Fachliteratur: M. Baerns et al., Technische Chemie, Wiley-VCH; HJ. Arpe, Industrielle Organische Chemie, Wiley-VCH; G. E. Jeromin, M. Bertau, Bioorganikum, Wiley-VCH. Lehrformen: 51 (WS): Vorlesung (2 SWS) 52 (SS): Praktikum (3 SWS) Empfohlen: Kenntnisse, wie sie in den Modulen "Grundlagen der Technischen Chemie" und "Industrielle Chemie" vermittelt werden. ährlich im Wintersemester Voraussetzungen für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: KA* [60 bis 120 min] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Leistungspunkte: 6 Note: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): KA* [w: 2] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 75h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltungen, die schriftliche Ausarbeitung		<u> </u>		
(Bio-)Katalysatorrecycling, Effizienzvergleich und Einsatzgebiete klassischer Katalysatoren und Biokatalysatoren Typische Fachliteratur: M. Baerns et al., Technische Chemie, Wiley-VCH; HJ. Arpe, Industrielle Organische Chemie, Wiley-VCH; G. E. Jeromin, M. Bertau, Bioorganikum, Wiley-VCH. Lehrformen: 51 (W5): Vorlesung (2 SW5) 52 (SS): Praktikum (3 SW5) Voraussetzungen für de Teilnahme: Kenntnisse, wie sie in den Modulen "Grundlagen der Technischen Chemie" und "Industrielle Chemie" vermittelt werden. Turnus: Jährlich im Wintersemester Voraussetzungen für der Modulprüfung umfasst: KA* [60 bis 120 min] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Leistungspunkte: 6 Note: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): KA* [w: 2] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 75h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltungen, die schriftliche Ausarbeitung		· · · · · · · · · · · · · · · · · · ·		
klassischer Katalysatoren und Biokatalysatoren Typische Fachliteratur: M. Baerns et al., Technische Chemie, Wiley-VCH; HJ. Arpe, Industrielle Organische Chemie, Wiley-VCH; G. E. Jeromin, M. Bertau, Bioorganikum, Wiley-VCH. Lehrformen: S1 (WS): Vorlesung (2 SWS) S2 (SS): Praktikum (3 SWS) Empfohlen: Kenntnisse, wie sie in den Modulen "Grundlagen der Technischen Chemie" und "Industrielle Chemie" vermittelt werden. Turnus: jährlich im Wintersemester Voraussetzungen für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: KA* [60 bis 120 min] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Leistungspunkte: 6 Note: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): KA* [w. 2] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 75h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltungen, die schriftliche Ausarbeitung				
Typische Fachliteratur: M. Baerns et al., Technische Chemie, Wiley-VCH; HJ. Arpe, Industrielle Organische Chemie, Wiley-VCH; G. E. Jeromin, M. Bertau, Bioorganikum, Wiley-VCH. S1 (WS): Vorlesung (2 SWS) S2 (SS): Praktikum (3 SWS) Voraussetzungen für die Teilnahme: Wenntnisse, wie sie in den Modulen "Grundlagen der Technischen Chemie" und "Industrielle Chemie" vermittelt werden. Jährlich im Wintersemester Voraussetzungen für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: KA* [60 bis 120 min] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Leistungspunkte: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): KA* [w: 2] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 75h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltungen, die schriftliche Ausarbeitung				
Organische Chemie, Wiley-VCH; G. E. Jeromin, M. Bertau, Bioorganikum, Wiley-VCH. Lehrformen: 51 (WS): Vorlesung (2 SWS) S2 (SS): Praktikum (3 SWS) Voraussetzungen für Empfohlen: Kenntnisse, wie sie in den Modulen "Grundlagen der Technischen Chemie" und "Industrielle Chemie" vermittelt werden. Turnus: Voraussetzungen für Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: KA* [60 bis 120 min] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Leistungspunkte: 6 Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): KA* [w: 2] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 75h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltungen, die schriftliche Ausarbeitung	Typische Fachliteratur			
Wiley-VCH.	l ypische raenneeratar.			
Lehrformen: S1 (WS): Vorlesung (2 SWS) S2 (SS): Praktikum (3 SWS) Empfohlen: Kenntnisse, wie sie in den Modulen "Grundlagen der Technischen Chemie" und "Industrielle Chemie" vermittelt werden. jährlich im Wintersemester Voraussetzungen für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: KA* [60 bis 120 min] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Leistungspunkte: 6 Note: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): KA* [w: 2] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 75h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltungen, die schriftliche Ausarbeitung				
Voraussetzungen für die Teilnahme: Kenntnisse, wie sie in den Modulen "Grundlagen der Technischen Chemie" und "Industrielle Chemie" vermittelt werden. Turnus: Jährlich im Wintersemester Voraussetzungen für der Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: KA* [60 bis 120 min] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Leistungspunkte: 6 Note: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): KA* [w: 2] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 75h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltungen, die schriftliche Ausarbeitung	Lehrformen:			
Voraussetzungen für die Teilnahme: Kenntnisse, wie sie in den Modulen "Grundlagen der Technischen Chemie" und "Industrielle Chemie" vermittelt werden. Turnus: Jährlich im Wintersemester Voraussetzungen für der Modulprüfung umfasst: KA* [60 bis 120 min] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Leistungspunkte: 6 Note: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): KA* [w: 2] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 75h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltungen, die schriftliche Ausarbeitung	Lemionnem			
Chemie" und "Industrielle Chemie" vermittelt werden. Turnus: Jährlich im Wintersemester Voraussetzungen für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: KA* [60 bis 120 min] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Leistungspunkte: 6 Note: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): KA* [w: 2] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 75h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltungen, die schriftliche Ausarbeitung	Voraussetzungen für			
Chemie" und "Industrielle Chemie" vermittelt werden. Turnus: Jährlich im Wintersemester Voraussetzungen für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: KA* [60 bis 120 min] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Leistungspunkte: 6 Note: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): KA* [w: 2] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 75h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltungen, die schriftliche Ausarbeitung	die Teilnahme:	Kenntnisse, wie sie in den Modulen "Grundlagen der Technischen		
Voraussetzungen für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: KA* [60 bis 120 min] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Leistungspunkte: 6 Note: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): KA* [w: 2] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 75h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltungen, die schriftliche Ausarbeitung		Chemie" und "Industrielle Chemie" vermittelt werden.		
die Vergabe von Leistungspunkten: KA* [60 bis 120 min] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Leistungspunkte: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): KA* [w: 2] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 75h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltungen, die schriftliche Ausarbeitung	Turnus:	jährlich im Wintersemester		
die Vergabe von Leistungspunkten: KA* [60 bis 120 min] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Leistungspunkte: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): KA* [w: 2] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 75h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltungen, die schriftliche Ausarbeitung	Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen		
Leistungspunkten: KA* [60 bis 120 min] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Leistungspunkte: 6 Note: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): KA* [w: 2] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 75h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltungen, die schriftliche Ausarbeitung	_			
AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Leistungspunkte: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): KA* [w: 2] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 75h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltungen, die schriftliche Ausarbeitung	_			
* Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Leistungspunkte: 6 Note: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): KA* [w: 2] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 75h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltungen, die schriftliche Ausarbeitung				
Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Leistungspunkte: 6 Note: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): KA* [w: 2] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 75h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltungen, die schriftliche Ausarbeitung				
Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Leistungspunkte: 6 Note: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): KA* [w: 2] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 75h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltungen, die schriftliche Ausarbeitung		* Bei Modulen mit mehreren Prüfungsleistungen muss diese		
bewertet sein. Leistungspunkte: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): KA* [w: 2] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 75h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltungen, die schriftliche Ausarbeitung		1		
Note: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): KA* [w: 2] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 75h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltungen, die schriftliche Ausarbeitung				
Note: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): KA* [w: 2] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 75h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltungen, die schriftliche Ausarbeitung	Leistungspunkte:			
Prüfungsleistung(en): KA* [w: 2] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 75h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltungen, die schriftliche Ausarbeitung	Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)		
KA* [w: 2] AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 75h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltungen, die schriftliche Ausarbeitung				
AP*: Belegarbeit über die Ergebnisse der Praktikumsaufgabe [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 75h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltungen, die schriftliche Ausarbeitung				
* Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 75h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltungen, die schriftliche Ausarbeitung				
Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 75h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltungen, die schriftliche Ausarbeitung				
bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 75h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltungen, die schriftliche Ausarbeitung		1		
Arbeitsaufwand: Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 75h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltungen, die schriftliche Ausarbeitung				
Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltungen, die schriftliche Ausarbeitung	Arbeitsaufwand:			
Nachbereitung der Lehrveranstaltungen, die schriftliche Ausarbeitung		<u> </u>		

Daten:	PYCH3 BA. Nr. 159 Stand: 25.01.2015 📜 Start: SoSe 2015
Modulname:	Theoretische Physikalische Chemie
(englisch):	Theoretical Physical Chemistry
Verantwortlich(e):	<u>Mögel, Hans-Jörg / Prof. Dr.</u>
Dozent(en):	<u>Mögel, Hans-Jörg / Prof. Dr.</u>
Institut(e):	Institut für Physikalische Chemie
Dauer:	1 Semester
Qualifikationsziele /	Die Studierenden erlangen Kenntnisse von den theoretischen
Kompetenzen:	Grundkonzepten der Physikalischen Chemie (Quantenchemie,
	intermolekulare Wechselwirkungen, Statistische Thermodynamik,
	Thermodynamik irreversibler Prozesse) und sind zu deren Anwendung
	auf einfache praktische Probleme befähigt.
Inhalte:	1. Quantenchemie: Wellenfunktion, Operator, Erwartungswert von
	Observablen, Lösungen der Schrödinger-Gleichung für freies
	Teilchen im Kasten mit unendlich hohen Potenzialwänden,
	harmonischer Oszillator, starrer Rotator, Wasserstoffatom, LCAO-
	Ansatz für H ₂ ⁺ , Hybridorbitale.
	2. Thermodynamik irreversibler Prozesse: Entropiebilanzgleichung,
	Entropieproduktion, Onsager-Beziehungen, direkte und
	Kreuzeffekte, Curie-Prinzip, stationäre Zustände,
	Bilanzgleichungen für Masse, innere Energie und Impuls,
	Diffusionsgleichung, Strukturbildung
	3. Statistische Thermodynamik: Grundlagen der Kombinatorik,
	Entropie und Information, Boltzmann-Statistik, Kanonische
	Gesamtheit, Verteilungsfunktionen und ihr Zusammenhang mit
	thermodynamischen Funktionen, Behandlung von Zwei-Niveau-
	Systemen, von Systemen aus harmonischen Oszillatoren und
	starren Rotatoren, ideale Gase mit inneren Freiheitsgraden,
	Berechnung der Gleichgewichtskonstanten chemischer
	Reaktionen aus Moleküldaten, Gleichverteilungssatz der Energie,
E : 1 E 11:	Modelle für Adsorptionsisothermen, reale Gase.
Typische Fachliteratur:	G. Wedler: Lehrbuch der Physikalischen Chemie, Wiley-VCH; P. W.
	Atkins: Physikalische Chemie, Wiley-VCH; W. Göpel, HD. Wiemhöfer:
	Statistische Thermodynamik, Spektrum Akademischer Verlag; B.
	Baranowski: Thermodynamik irreversibler Prozesse, Deutscher Verlag für Grundstoffindustrie.
Lahrfarmanı	
Lehrformen:	S1 (SS): Vorlesung (3 SWS) S1 (SS): Übung (1 SWS)
Voraussetzungen für	Empfohlen:
die Teilnahme:	Chemische Thermodynamik und Kinetik, 2012-06-06
die reimainne.	Grundlagen der Physikalischen Chemie für Ingenieure, 2009-08-11
Turnus:	iährlich im Sommersemester
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:
Leistungspunkten:	in Prüfungsvariante 1:
Leistangspankten.	MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPPC. [45 bis
	60 min]
	PVL: Schriftliches Abtestat [60 min]
	oder
	in Prüfungsvariante 2:
	KA [90 min]
	Prüfungsvariante 1: Für Studierende des Diplomstudienganges Chemie.
	Prüfungsvariante 2: Für Studierende aller Studiengänge außer dem
	Diplomstudiengang Chemie.
	PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden.
	1 Jan

Leistungspunkte:	6
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): in Prüfungsvariante 1:
	MP: Die Modulprüfung ist Bestandteil der Komplexprüfung KPPC. [w: 1] oder
	in Prüfungsvariante 2:
	KA [w: 1]
Arbeitsaufwand:	Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 60h Präsenzzeit und 120h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltung, die Lösung von Übungsaufgaben sowie die Prüfungsvorbereitung.

Daten:	TRIN. BA. Nr. 165 Stand: 25.03.2014 🔁	Start: SoSe 2010
Modulname:	Toxikologie, Rechtskunde für Chemiker und	
	naturwissenschaftliche Informationsmedien	
(englisch):	Toxicology, Law for Chemists and Information Lite	racy in Natural
	Sciences	
Verantwortlich(e):	Tesch, Silke / Dr.	
Dozent(en):	Böhme, Uwe / PD Dr. rer. nat. habil.	
	<u>Tesch, Silke / Dr.</u>	
	<u>Schüürmann, Gerrit / Prof. Dr.</u>	
	<u>Kriehme, Jana / Dr.</u>	
Institut(e):	Institut für Anorganische Chemie	
, ,	Institut für Analytische Chemie	
	Institut für Organische Chemie	
	Fakultät für Chemie und Physik	
Dauer:	2 Semester	
Qualifikationsziele /	Die Studierenden erlangen Grundkenntnisse über	toxikologische
Kompetenzen:	Wirkprinzipien chemischer Stoffe und ihre Zusamn	nenhänge mit der
	Molekülstruktur, über die Einteilung und Wirkung v	on Gefahr- und
	Giftstoffen und die notwendigen Erste-Hilfe-Maßna	hmen sowie über das
	Arbeitsschutzrecht. Sie erwerben die Befähigung z	um
	"Sachkundenachweis" und gewinnen außerdem pr	raxisrelevante
	Kenntnisse zur effizienten Informationsbeschaffun	g in den
	Naturwissenschaften.	
Inhalte:	1. Toxikologie: Historische Entwicklung, Dosis	s-Wirkung-Beziehung,
	Zellaufbau und zelluläre Prozesse, Stofftra	nsport durch
	Membranen, Resorption durch Haut, Lunge	und Magendarmtrakt,
	Metabolismus (Phase 1 und Phase 2); jewe	ils mit Beispielen
	toxikologischer Wirkung von Chemikalien.	
	2. Rechtskunde: Allgemeiner Teil: Grundgese	tz, Arbeitsschutzrecht,
	Rechtspflichten/-folgen. Spezieller Teil: Che	emG, GefStoffV und EU
	Regelungen über gefährliche Stoffe,	
	Betriebssicherheitsverordnung, Pflanzensc	hutzgesetz,
	Verordnung über Verbote und Beschränkur	ngen des
	Inverkehrbringens gefährlicher Stoff, Zube	_
	Erzeugnisse nach dem Chemikaliengesetz	und Technische
	Regeln für Gefahrstoffe (TRGS).	
	3. Naturwissenschaftliche Informationsmedie	n: Bibliothekskataloge,
	elektrische Zeitschriften und Volltexte, Dok	kumentenlieferdienste,
	frei zugängliche Informationsquellen; Rech	erchenstrategien in
	fachspezifischen Informationsquellen und I	Datenbanken (Römpp,
	Landolt-Börnstein, SciFinder Scholar, Beilst	ein, Gmelin, Inspec,
	Patentdatenbanken); Zitieren und Literatur	rverwaltung.
Typische Fachliteratur:	G. Eisenbrand, M. Metzler: Toxikologie für Chemike	er,
	Thieme. G. Borchert: Recht für Chemiker,	
	Hirzel; O. Fahr, H. M. Prager: Sachkundeprüfung na	ach der
	Chemikalienverbotsverordnung, VCH,	
	E. Poetzsch: Naturwissenschaftlich-technische Info	rmation, Verlag-
	Poetzsch.	
Lehrformen:	S1 (SS): Rechtskunde / Vorlesung (1 SWS)	
	S2 (WS): Toxikologie / Vorlesung (2 SWS)	
	S2 (WS): Naturwissenschaftliche Informationsmedi	ien / Vorlesung (1
	SWS)	,
	S2 (WS): Naturwissenschaftliche Informationsmedi	ien / Übung (1 SWS)
Voraussetzungen für	Empfohlen:	· · · · · · · · · · · · · · · · · · ·
die Teilnahme:	Chemische Grundlagenkenntnisse und selbstständ	liger Umgang mit dem
ı		

	Computer
Turnus:	jährlich im Sommersemester
Voraussetzungen für die Vergabe von	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst:
Leistungspunkten:	KA*: Toxikologie [90 min]
	KA*: Rechtskunde für Chemiker [120 min]
	AP*: Präsentation des Rechercheprojektes und Lösung der Belegaufgabe
	* Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein.
Leistungspunkte:	6
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): KA*: Toxikologie [w: 1]
	KA*: Rechtskunde für Chemiker [w: 1]
	AP*: Präsentation des Rechercheprojektes und Lösung der Belegaufgabe [w: 1]
	* Bei Modulen mit mehreren Prüfungsleistungen muss diese
	Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein.
Arbeitsaufwand:	Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 75h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der LV sowie die Klausurvorbereitung und die Erstellung der Belegaufgabe/Präsentation.

Daten:	NT. MA. Nr. 3154 Stand: 02.03.2010 This is Start: WiSe 2010
Modulname:	Umwelt- und Rohstoffchemie
(englisch):	Environmental and Raw Material Chemistry
Verantwortlich(e):	Bertau, Martin / Prof. Dr.
Dozent(en):	Bertau, Martin / Prof. Dr.
Institut(e):	Institut für Technische Chemie
Dauer:	1 Semester
Qualifikationsziele /	Der Studierende soll Kenntnisse erlangen über die technische
Kompetenzen:	Realisierung von modernen Technologien zur nachhaltigen Energie- und
	Rohstofferzeugung sowie zur Reinhaltung von (Ab-)Luft, (Ab-)Wasser
	und Böden und deren Einbindung in moderne chemische
	Produktionsprozesse.
Inhalte:	Technischer Umweltschutz: Reinigungsmaßnahmen für
	(Ab)Luft/(Ab-)Gase, (Ab-)Wasser, Produktionsintegrierter
	Umweltschutz;
	2. Prozeßintensivierung in der Synthese von Fein- und
	Spezialchemikalien, Mikroreaktionstechnik;
	3. Regenerierbare Energie- und Rohstoffträger: Nachwachsende
	Rohstoffe, Bioraffinerie, Biodiesel, CO ₂ -Fixierung.
Typische Fachliteratur:	M. Baerns et al.: Lehrbuch der Technischen Chemie, Wiley-VCH;
	K.H. Büchel et al., Industrielle Anorganische Chemie, Wiley-VCH;
	Arpe, Industrielle Organische Chemie, Wiley-VCH;
	G.E. Jeromin, M. Bertau: Bioorganikum, Wiley-VCH;
	A. Liese et al.: Industrial Biotransformations, Wiley-VCH;
	W. Reineke, M. Schlömann, Umweltmikrobiologie, Springer;
	C. Bliefert, Umweltchemie, Wiley-VCH.
Lehrformen:	S1 (WS): Rohstoffchemie I / Vorlesung (2 SWS)
	S1 (WS): Rohstoffchemie II / Vorlesung (1 SWS)
	S1 (WS): Umweltchemie / Vorlesung (1 SWS)
Voraussetzungen für	Empfohlen:
die Teilnahme:	Kenntnisse in Technischer, Anorganischer und Physikalischer Chemie
	wie sie in den Modulen IC, AC und PC vermittelt werden.
Turnus:	jährlich im Wintersemester
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:
Leistungspunkten:	KA [60 bis 120 min]
Leistungspunkte:	6
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)
	Prüfungsleistung(en):
	KA [w: 1]
Arbeitsaufwand:	Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 60h
	Präsenzzeit und 120h Selbststudium. Letzteres umfaßt die Vor- und
	Nachbereitung der Lehrveranstaltungen sowie die Vorbereitung auf die
	Klausurarbeit.

Daten:	UWTOX. MA. Nr. 3026 Stand: 07.10.2009 5 Start: WiSe 2009
Modulname:	Umweltverhalten organischer Schadstoffe
(englisch):	Environmental Behaviour of Organic Contaminants
Verantwortlich(e):	Schüürmann, Gerrit / Prof. Dr.
Dozent(en):	Schlömann, Michael / Prof. Dr.
	Schüürmann, Gerrit / Prof. Dr.
Institut(e):	Institut für Biowissenschaften
	Institut für Organische Chemie
Dauer:	1 Semester
Qualifikationsziele /	Die Studenten erhalten vertiefte Kenntnisse über die Chemodynamik
Kompetenzen:	organischer Umweltchemikalien sowie über Mechanismen ihres Abbaus, ihrer Bioakkumulation und ihrer ökotoxikologischen Schadwirkung. Dabei erlernen sie sowohl ökologische Bewertungskonzepte als auch Modelle zur quantitativen Beschreibung der zugrundeliegenden Prozesse. Durch ein begleitendes Praktikum erhalten sie Erfahrungen im Umgang mit Biotests zur Abbaubarkeit und Toxizität chemischer Stoffe.
Inhalte:	1. Chemodynamik
	Konzeption zur Stoffbewertung in der Ökologischen Chemie, intermolekulare Wechselwirkungen, umweltrelevante Stoffeigenschaften (Lipophilie, Sorptionskonstante, Henry-Konstante), abiotische Transformationsprozesse (Hydrolyse, Photolyse), Fugazitätsmodelle (Verteilung und Verbleib in der Umwelt). 2. Biologischer Abbau
	Persistenz, vollständiger Abbau vs. Cometabolismus, Schadstoff- Fixierung an der Bodenmatrix, aerober Abbau (Alkane, BTEX, Chloraromaten, PAK, Chloraliphaten), anaerober Abbau (Aromaten, Chlorethene), Biotenside und Bioverfügbarkeit, Abbauenzyme, Genetik und Evolution von Abbauwegen, Konzentrationsabhängigkeit, Hemmungsphänomene. 3. Ökotoxikologie
	Bioakkumulation (Nahrungskette, Lipophilie-Modell, Sediment), Metabolismus (Phase I, Phase II), Dosis-Wirkungs-Beziehung, akute und längerfristige Wirkung, aquatische Toxizität (Testsysteme, Basistoxizität vs. erhöhte Toxizität, spezifische Toxizitätsmechanismen), Kombinationswirkungen.
Typische Fachliteratur:	Crosby DG 1998: Environmental Toxicology and Chemistry, Oxford
	University Press. Fent K 2003: Ökotoxikologie, 2. Auflage, Thieme. Schwarzenbach RP, Gschwend PM, Imboden DM 2002: Environmental Organic Chemistry, 2nd Edition, John Wiley. Reineke W & Schlömann M 2007 Umweltmikrobiologie, Elsevier
Lehrformen:	S1 (WS): Chemodynamik und Ökotoxikologie / Vorlesung (2 SWS) S1 (WS): Praktikum (2 SWS) S1 (WS): Biologischer Abbau / Vorlesung (1 SWS)
Voraussetzungen für	Empfohlen:
die Teilnahme:	Bachelor in Chemie, Angewandter Naturwissenschaft, Geoökologie oder in einer anderen natur- oder ingenieurwissenschaftlichen Fachrichtung.
Turnus:	jährlich im Wintersemester
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:
Leistungspunkten:	KA [90 min] PVL: Bestandene Übungsaufgaben PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden.
Leistungspunkte:	6
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en):

	KA [w: 1]
Arbeitsaufwand:	Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 75h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und
	Nachbereitung der Vorlesung und Praktika und die Klausurvorbereitung.

Freiberg, den 24. Juni 2015

gez. Prof. Dr.-Ing. Bernd Meyer Rektor

Herausgeber: Der Rektor der TU Bergakademie Freiberg

Redaktion: Prorektor für Bildung

TU Bergakademie Freiberg 09596 Freiberg Anschrift:

Medienzentrum der TU Bergakademie Freiberg Druck: