

Leibniz Institute for Solid State and Materials Research Dresden

In situ and in operando structural studies by Leibniz IFW Dresden scientists at PETRA III.

Ivan Kaban

Leibniz Institute for Solid State and Materials Research Dresden

Overview

Research topics:

- Materials for electrochemical energy storage
- Solidification and phase transformations
- Additive manufacturing
- Short-range order in liquid and amorphous state

Experimental techniques:

- X-ray diffraction & absorption spectroscopy
- Predominantly in situ and operando studies
- Development of experimental setup

In operando studies of structural transformations and reaction mechanisms

during charging and discharging

- XRD measurements at P02.1
- X-ray absorption spectroscopy at P64 & P65
- Instrumentation development:
- high-resolution powder diffractometer at P02.1
- sample holders

Contact: Dr. D. Mikhailova, IFW Dresden

Instrument design at IFW Dresden: electrochemical cells & cell holders

Journal of Applied Crystallography ISSN 0021-8898

> Received 16 February 2013 Accepted 16 May 2013

Advances in *in situ* powder diffraction of battery materials: a case study of the new beamline P02.1 at DESY, Hamburg

Markus Herklotz,^{a,b}* Frieder Scheiba,^{a,c,d} Manuel Hinterstein,^b Kristian Nikolowski,^{a,c,d} Michael Knapp,^{c,d} Ann-Christin Dippel,^e Lars Giebeler,^{a,b} Jürgen Eckert^{a,b} and Helmut Ehrenberg^{a,c,d}

eight cells holder (2023)

Instrument design at IFW Dresden:

- 2 three-axis goniometer at P02.1
- 3 multi-channel high-resolution detector with 10 analyzer crystals

Multi-analyser detector (MAD) for high-resolution and high-energy powder X-ray diffraction

Alexander Schökel,^{a,b} Martin Etter,^b Andreas Berghäuser,^c Alexander Horst,^d Dirk Lindackers,^d Thomas A. Whittle,^e Siegbert Schmid,^e Matias Acosta,^f Michael Knapp,^a* Helmut Ehrenberg^a and Manuel Hinterstein^a

Na₂Fe₂Se₂O double anti-perovskite: XRD at P02.1 & XAS at P64

M.V. Gorbunov, T. Doert, D. Mikhailova, Chem. Commun., 2023

Leibniz Insti for Solid Sta Materials Re Dresden

6

Levitated metallic sample

Scope:

- Effect of melt undercooling on phase formation sequence
- Solid state transformations during cooling
- Crystal growth in dependence on undercooling

Electromagnetic levitation:

- \succ inductive heating \rightarrow high temperatures can be reached
- \succ no crucible \rightarrow no reaction, no heterogeneous nucleation

Contact: Dr. I. Kaban, IFW Dresden

High-speed videos taken from CrFeNi at 50.000 fps

small undercooling (70 K):

only one crystalline phase is observed

large undercooling (139 K)

there is a secondary phase

high-speed video → crystal growth rate

A. Andreoli et al. Acta Mater., 2021

What are the crystalline phases?

EML facility of IFW Dresden

HE XRD

In situ measurements:

 \rightarrow structure, phase formation and

transformations

9

Schematic of LPBF processing

Laser powder bed fusion

- > Interplay of different physical and chemical phenomena
- Microstructure & properties depend on powder

processing and solidification conditions in molten pool

3D printed Fe85Cr4Mo1V1W8C1 samples

K. Kosiba et al., JMST, 2023

Contact: Prof. Dr. Julia K. Hufenbach, IFW Dresden

XRD micro-mapping of LPBF-fabricated Fe85Cr4Mo1V1W8C1 sample after wear test

Ratio of austenite and martensite in the sample near worn surface

ratio A/M

0.00 0.02 0.04 0.06 0.08 0.10 0.12

z (mm)

ratio A/M

3.36 2.73 2.09

1.46

0.82

Transformation mechanisms

Region 1: Wear or friction-induced transformation of retained austenite into martensite near worn surface.

Region 2: M-A transformation in the region of elevated temperature

Possible temperature profile in the sample during wear test

K. Kosiba et al., JMST, 2023

Cumulative effect of melt trucks on residual stress

Ex situ strain mapping of Zr-based BMG with increasing number of tracks

Contact: Dr. K. Kosiba, Dr. S. Scudino, IFW Dresden

Future goals (wishes) for PETRA III:

- wide angle XRD
- small angle X-ray scattering
- X-ray imaging
- computed tomography (RAC project

submitted)

X-ray imaging and diffraction measurements during 3D printing at Advanced Photon Source, USA [C. Zhao et al., Sci. Rep. 2017].

Contact at IFW Dresden

- Dr. D. Mikhailova (electrochemical energy storage)
- > Prof. Dr. J.K. Hufenbach, Dr. K. Kosiba, Dr. S. Scudino (additive manufacturing)
- > Dr. I. Kaban (solidification, phase transformations)

Resistance

- Temperature (pyrometer or thermocouple)
- Structure (high-energy XRD & fast detector)

Key parameters:

Vacuum (5 \times 10⁻⁴ mbar) or inert gas (Ar, He)

Heating rate: $\sim 10^{1} - 10^{5} \text{ K s}^{-1}$

Cooling rate: $10^2 - 10^3$ K s⁻¹ (in He)

Contact: Dr. I. Kaban, IFW Dresden

Rapid heating of Cu_{47.5}Zr_{47.5}Al₅ metallic glass (150 K/s)

CHT diagram for Cu_{47.5}Zr_{47.5}Al₅ metallic glass

PT1: $Cu_{10}Zr_7 \rightarrow B2 CuZr$ PT2: $Cu_{10}Zr_7 \rightarrow \tau_4$ PT3: $B2 + \tau_4 \rightarrow \tau_3 + L$

Tailoring microstructure by rapid heating of Cu_{47.5}Zr_{47.5}Al₅ MG to a given temperature

 $T_x: MG \rightarrow Cu_{10}Zr_7 + B2 CuZr$

PT1: $Cu_{10}Zr_7 \rightarrow B2 CuZr$

PT2: $Cu_{10}Zr_7 \rightarrow \tau_4$

