PETRA III beamlines, services and access

La Land

Oliver H. Seeck

Saxony – DESY workshop November 23rd & 24th, 2023

DESY

Photon Science Accelerator science Astro Particle Science High Energy Particle Science

DESY. Saxony – DESY workshop | O.H. Seeck, November 23rd & 24th, 2023

FLASH

Röntgenlaser XFEL für harte Röntgenstrahlung für atomare Strukturen & Femtosekunden Dynamik

PETRA III

PETRA III fact sheet

DESY's Brilliant Synchrotron Radiation Source

History of PETRA:

1978: PETRA I built for high-energy physics, first direct observation of the gluon

1988: PETRA II as pre-accelerator for HERA

2007: rebuild of PETRA as a 3. generation synchrotron radiation source (PETRA III)

2010: start of user operation with the first three beamlines

2013: all 15 beamlines fully operational in the experimental hall "Max v. Laue"

2016: PETRA III extension project starts users operation with the first two beamlines

planned for 2027: shutdown of PETRA III as part of PETRA IV upgrade

The PETRA III experimental hall "Max von Laue"

electron energy stored current emittance $(h \times v)$ circumference photon energy range beamlines in operation beamlines under construction beamlines still open user operation (hours/year) bunch separation

6 GeV 100 / 120 mA 1.3 nmrad × 15 pmrad 2304 m 250 eV - 150 keV 25 1 (P25) 1 (P63) 5000 192 ns or 16 ns

PETRA III more than 50 experiments covering most relevant methods

Diffraction & Scattering

P02.1, P02.2, P07, P21.1, P21.2, P61 **P03**, **P12**, **P62 P08**, **P23**, **P24**, **P25** (2024) P11, P13, P14 **P04, P06, P10 P09**

Spectroscopy

P01 P22

P04

P64, **P65**

P09 P66

Imaging

P04, P06, P10 P05, **P06**, **P07**, **P14**, **P61**, **P23-KIT (2024)** P03, P06, P21.1, P21.2, P62, P25 (2024)

High energy X-ray, white beam diffraction & imaging Small angle scattering, GISAXS, µASAXS Crystallography & Surfaces scattering, Macromolecular crystallography Coherent diffraction & scattering Resonant magnetic scattering

Inelastic and nuclear resonant scattering Hard X-ray photoelectron spectroscopy Soft X-ray photoelectron spectroscopy X-ray absorption & fluorescence spectroscopy XMCD VUV spectroscopy, t-resolved

> Micro & Nano imaging (coherence) Micro & Nano imaging (absorption & phase contrast, laminography) Micro & Nano imaging (fluorescence, dark field, SAXS, etc.)

BLs P61 ... P65 -

Several beamlines host multiple methods (P01, P04, P07, P09, P10, P23)

X-ray beam parameters Insertion devices

Photon flux at $\Delta E/E = 10^{-4}$

Coherent flux Full beam 10¹¹ ph/sec 3-10¹³ ph/sec

Focusing of X-rays :

2µm (easy) 100nm (needs some attention) 5nm (lowest ever achieved)

Photon energy of X-rays : 5 beamlines with > 60keV available → good opportunities for materials science

PETRA III 23 Beamlines operational

Methods at beamlines	With experime
- Scattering	- Large col
- Diffraction	- High flux
- Spectroscopy	- Small foc
- Imaging	- High ene
- Coherence applications	- High stab
	- Speed
	In citu 8

External contributions or responsibilities

3	Beamlines operated by EMBL	
2.5	Beamlines operated by HEREON	
1.3	"Indian virtual beamline"	
0.325	"Saxonian virtual beamline"	
1.89	Swedish beamline equivalents	
	with the two Swedish beamlines P21.1 a	

1 beamline several MPG/Helmholtz involvements ➔ priority access

ents optimized for: herence volume

Hall "Paul Peter Ewald"

BLs P61 ... P65 -

CUS rgy resolution oility

- In-situ & operando methods

priority access ➔ priority access ➔ priority access and P21.2

BLs P21...P25

PETRA III User Operations & Schedule 2020

Available (with >98% availability) 4000 h/a user time : internal time: 1000 h/a **Unique users:** 3350 per year **User visits:** 7500 per year

Visits from Saxony since 07/2022: 289 (07/2018-12/2019: 148)

Unique User from Saxony since 07/2022: 157 (07/2018-12/2019: 89)

Experiments from Saxony since 07/2022: 86 (07/2018-12/2019: 61) South Korea 1%

Switzerland 2% Netherlands 2%

Denmark 3%

UK 3% Austria 3%

Since start of the Saxonian-DESY Cooperation x 2 more users and 30% more experiments

PETRA III access for proposals from Saxony Priority access

The access is compatible with the so-called "Swedish Model".

In short this means:

- Saxonian users write **beamtime proposals** parallel to other users via the web-interface **DOOR**
- Saxonian users are **FREE** to apply for beamtime at **ALL** PETRA III beamlines
- In DOOR, during the process of completing the beamtime proposal. The applicant ensures:
 - + that the DOOR-"Project Leader" is staff member at an institute/university in Saxony
 - + chooses the value "Saxony-DESY collaboration"
 - at the drop-down menu "User Group/Collaboration"
- Beamtime proposals marked as "Saxony-DESY collaboration" are reviewed by the DESY Project Review Panel in parallel to all other proposals
- Saxony-DESY proposals are selected by scientific excellence AND/OR by priority access
- Saxony proposal to HEREON or EMBL beamlines are treated as regular non-priority proposals

Two ways to receive beamtime: regular scientific excellence or by priority access

Reserved for Saxonian-DESY cooperation: 0.325 beamline equivalents = 910h = 38 days of beamtime p.a.

PETRA III new rolling access model Current access model is NOT flexible

Beamtime access is bound to calls: March 1st and September 1st. March call: August-December **Beamtime is scheduled:** September call: February-July

Long waiting time (up to 15 Months) even for small and simple experiments

new Access Model

You will be able to submit a proposal at any time. You will be able to specify "long lead time" or "prompt access". You will be able to split a beamtime (e.g. 18h \rightarrow 3 x 6 shifts beamtime).

Starting 2024 for P08, P11, P22, P23, P24, chemistry labs and nano lab instruments

PETRA III Beamlines can serve many different science areas

PETRA III users conduct science in many areas, Swedish community is strongest

Extreme States of Matter: From Cold Ions to Hot Plasmas

Quantum Condensed Matter: Magnetism, Superconductivity, and Beyond

Materials and Processes for Energy and Transport Technologies

Nanoscience and Materials for Information Technologies

Soft Matter, Health and Life Sciences

DESY. Saxony – DESY workshop | O.H. Seeck, November 23rd & 24th, 2023

CDWs in YBCO () 1.0 () 0 () 0.5 52:1 n (*h*, *o*, ℓ) **Grain Rotation**

11

PETRA III delivers coherent photons Coherence for experiments (demonstrator) $A(\mathbf{q}) \propto \int_{V_{\text{coher}}} \rho(\mathbf{r}) \exp(i\mathbf{q} \cdot \mathbf{r}) d^3 r = \mathfrak{F}\{\rho(\mathbf{r})\}$ coherence volume

 \rightarrow speckles contain the details of illuminated are →overall shape contains the general sample characteristics

Measurement with partially incoherent beam would be the incoherent sum of all patterns \rightarrow liquids scattering

DESY. Saxony – DESY workshop | O.H. Seeck, November 23rd & 24th, 2023

Coherent scattering with speckles

PETRA III Photon Science Team

C.G. Schroer

DESY. Saxony – DESY workshop | O.H. Seeck, November 23rd & 24th, 2023

HC Wille

O.H. Seeck

Thank you !!

