Amtliche Bekanntmachungen der TU Bergakademie Freiberg

A SEIBERCE

Nr. 37, Heft 2 vom 16. September 2021

Modulhandbuch

für den

Masterstudiengang

Energietechnik

Inhaltsverzeichnis

Abkürzungen	3
Arbeitssicherheit	4
Biogas	5
Discrete Element Method	7
Düsenauslegung und Sprays	8
Einführung in den Gewerblichen Rechtsschutz	9
Einführung in die Elektromobilität	10
Elektrische Öfen und Öfen mit Sonderatmosphären	11
Elektroenergiesysteme	13
Energieautarke Gebäude (Grundlagen und Anwendungen)	14
Energienetze und Netzoptimierung	15
Erdwärmenutzung (Grundlagen und Anwendung)	16
Fortgeschrittene Methoden der Programmierung in Matlab	17
Gasanlagentechnik	18
Grundlagen der Modellierung Thermischer Prozesse	19
Grundlagen des Explosionsschutzes	21
Industrielle Energieversorgung	22
Industrielle Photovoltaik	23
Investition und Finanzierung	24
Konstruktion wärmetechnischer Anlagen	25
Master Thesis Energietechnik mit Kolloquium	26
Mehrphasenströmung und Rheologie	27
Modellierung von Anlagen und Prozessen zur Energie- und Stoffwandlung	28
Modellierung von Energie- und Stoffwandlungsprozessen	30
Netzregulierung / Netzmanagement	32
Numerische Methoden der Thermofluiddynamik II	33
Öffentliches Bau- und Planungsrecht	34
Praktikum Energieanlagen	35
Process Modelling (Prozessmodellierung)	37
Projektarbeit Energietechnik	39
Projektierung von Wärmeübertragern	41
Regenerierbare Energieträger	42
Technikgeschichte des Industriezeitalters	43
Thermochemische Energieträgerwandlung	44
Transport Phenomena Using CFD	45
Vernetzte Energiespeicher	47
Vertiefung Deutsches und Europäisches Umweltrecht	48
Wärmepumpen und Kälteanlagen	49
Wasserstoff- und Brennstoffzellentechnologien	50

Abkürzungen

KA: schriftliche Klausur / written exam

MP: mündliche Prüfung / oral examination

AP: alternative Prüfungsleistung / alternative examination

PVL: Prüfungsvorleistung / prerequisite

MP/KA: mündliche oder schriftliche Prüfungsleistung (abhängig von Teilnehmerzahl) / written or

oral examination (dependent on number of students)

SS, SoSe: Sommersemester / sommer semester WS, WiSe: Wintersemester / winter semester

SX: Lehrveranstaltung in Semester X des Moduls / lecture in module semester x

SWS: Semesterwochenstunden

Daten:	ARBSI. BA. Nr. 630 / Stand: 16.11.2010 🔁 Start: SoSe 2011		
	Prüfungs-Nr.: 31705		
Modulname:	Arbeitssicherheit		
(englisch):	Occupational Safety and Health		
Verantwortlich(e):	<u>Drebenstedt, Carsten / Prof. Dr.</u>		
Dozent(en):	Gaßner, Wolfgang / DiplIng.		
Institut(e):	Institut für Bergbau und Spezialtiefbau		
Dauer:	1 Semester		
Qualifikationsziele / Kompetenzen:	Den Studierenden sollen Grundkenntnisse der Arbeitssicherheit sowie wichtige Informationen über die gesetzliche Unfallversicherung, das Verhalten bei Unfällen, die Prävention von Arbeits- und Wegeunfällen sowie von Berufskrankheiten vermittelt werden.		
Inhalte:	Grundlagen der Arbeitssicherheit		
	Sozialversicherungssysteme/ -recht		
	• Gefahren + Mensch = Gefährdung		
	 Gefahren: Lärm, Stäube, Dämpfe, Gase, mech. Schwingungen, opt. Wellen, el. Wellen + Felder, ionisierende Strahlung 		
	Gefahrenminimierungsansätze, z.B. TOP: T-Technik, O- Organisation, P-Person		
	Motivation zu arbeitssicherem und gesundheitsbewusstem Verhalten		
	Arbeitssicherheit und Gesundheitsschutz in der betrieblichen Praxis		
Typische Fachliteratur:	Skiba, R.: Handbuch der Arbeitssicherheit, Erich Schmidt Verlag, Vorlesungsumdrucke		
Lehrformen:	S1 (SS): Führungspraxis in der Arbeitssicherheit / Vorlesung (2 SWS) S1 (SS): HSE - Praktikum incl. Exkursion / Praktikum (1 SWS)		
Voraussetzungen für	Empfohlen:		
die Teilnahme:	Keine		
Turnus:	jährlich im Sommersemester		
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen		
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:		
Leistungspunkten:	KA [90 min]		
Leistungspunkte:	В		
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): KA [w: 1]		
Arbeitsaufwand:	Der Zeitaufwand beträgt 90h und setzt sich zusammen aus 45h Präsenzzeit und 45h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltung sowie die Klausurvorbereitung.		

Daten:	Biog. MA. Nr. 3407 / Stand: 03.06.2020 Start: WiSe 2020		
Modulname:	Prüfungs-Nr.: -		
	Biogas		
(englisch): Verantwortlich(e):	Biogas		
Dozent(en):	Krause, Hartmut / Prof. DrIng.		
` '	Wesolowski, Saskia / DrIng.		
Institut(e):	Institut für Wärmetechnik und Thermodynamik 1 Semester		
Dauer:	Die Studierenden erhalten einen Überblick über die biochemischen		
Qualifikationsziele / Kompetenzen:	Grundlagen und können die Arbeitsweise von Biogasanlagen beschreiben. Sie können unterschiedliche Anlagenkonzepte und		
	Bauweisen von Biogasanlagen im Detail erklären und miteinander vergleichen.		
	Die Studierenden werden in die Lage versetzt, die Biogaserzeugung und -nutzung unter Berücksichtigung ökologischer, betriebswirtschaftlicher		
	und volkswirtschaftlicher Aspekte objektiv zu bewerten. Sie werden befähigt, auf der Grundlage von Informationen über ökologische		
	Zusammenhänge sowie gesellschaftliche und politische		
	Rahmenbedingungen Chancen, aber auch Risiken und Grenzen der Energiegewinnung aus Biomasse im Biogassektor zu erkennen und zu beurteilen.		
Inhalte:	Besondere Schwerpunkte sind die biochemischen Grundlagen des		
initiate.	Biogasbildungsprozesses (anaerobe Fermentation), die		
	landwirtschaftliche Biogaserzeugung und die Aufbereitung des Biogases		
	auf Erdgasqualität sowie dessen Einspeisung in das öffentliche		
	Erdgasnetz als "Biomethan".		
	 Bedeutung und Stellung innerhalb der erneuerbaren Energieträger 		
	einfache Anlagen in Entwicklungsländern		
	landwirtschaftliche Biogaserzeugung in Deutschland		
	Vorteile der Biogaserzeugung und -nutzung		
	Biogasbildungsprozess		
	Eignung und Auswahl von Substraten		
	Verfahren zur Biogaserzeugung		
	 Zusammensetzung und Eigenschaften von Biogas 		
	Stromerzeugung in Kraft-Wärme-Kopplung		
	Beispiele ausgeführter Anlagen		
	 Verfahrensparameter, Kenngrößen 		
	Gasaufbereitung, Biomethan im öffentlichen Erdgasnetz		
	Sicherheitsregeln		
	Rahmenbedingungen, gesetzliche Regelungen		
Typische Fachliteratur:	Biogas-Praxis, Eder und Schulz, ökobuch Verlag Staufen 3. überarb. Aufl. 2006;		
	Handreichung Biogasgewinnung und -nutzung, Hrsg.Fachagentur für nachwachsende Rohstoffe, 3. überarb. Aufl. Gülzow 2006;		
	ANAEROBTECHNIK, Wolfgang Bischofsberger, Norbert Dichtl, Karl-Heinz		
	Rosenwinkel, Carl Franz Seyfried, Botho Böhnke, 2. überarb. Aufl. Springer Verlag 2005		
	Biogas - Erzeugung, Aufbereitung, Einspeisung, Hrsg. Frank Graf und		
	Siegfried Bajohr, Oldenburg Industrieverlag 2011		
Lehrformen:	S1 (WS): Vorlesung (2 SWS) S1 (WS): Übung (1 SWS)		
Voraussetzungen für	Empfohlen:		
die Teilnahme:	Abgeschlossenes Bachelorstudium		

Turnus:	jährlich im Wintersemester
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:
Leistungspunkten:	KA [90 min]
Leistungspunkte:	4
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): KA [w: 1]
Arbeitsaufwand:	Der Zeitaufwand beträgt 120h und setzt sich zusammen aus 45h Präsenzzeit und 75h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltungen und die Vorbereitung auf die Prüfungsklausur.

Data:	DisTheo. MA. Nr. 3206 / Version: 08.06.2017 5 Start Year: WiSe 2017		
Data.	Examination number:		
	45102		
Module Name:	Discrete Element Method		
(English):			
Responsible:	Schwarze, Rüdiger / Prof. DrIng.		
Lecturer(s):	Schwarze, Rüdiger / Prof. DrIng.		
Institute(s):	Institute of Mechanics and Fluid Dynamics		
Duration:	1 Semester(s)		
Competencies:	Students should remember the fundamentals of the discrete element		
Competencies.			
	method. They should be able to distinguish the different numerical		
	techniques and algorithms applied in the discrete element method. The		
	should be able to apply the discrete element method to simple problems		
	in the field of granular materials.		
Contents:	Most important ingredients are:		
	 modeling strategy (conceptual and numerical model); 		
	classification of DEM		
	 contact detection; interaction force-displacement laws, contact 		
	and friction laws		
	algorithms for solving the equations of motion		
	modelling of granular material		
	introduction to simulation tools and software (Yade,		
	LIGGHTS,etc.)		
	• practical hints; applications; practical exercises in 2d and 3d.		
Literature:	Pöschel, T. & Schwager, T.: Computational Granular Dynamics, Springe		
	ling, L & Stephansson, O.: Fundamentals of Discrete Element Methods		
	for Rock Engineering, Elsevier		
	Matuttis, H.G. & Chen, J.: Understanding the Discrete Element Method,		
	Wiley		
Types of Teaching:	S1 (WS): Discrete Element Method / Lectures (2 SWS)		
] ,,	S1 (WS): Discrete Element Method / Exercises (1 SWS)		
Pre-requisites:	Recommendations:		
l i o i oquionosi	Fundamental of Microstructures, 2010-12-02		
	Continuum Mechanics, 2016-07-11		
	Introduction to Scientific Programming, Fundamentals in mechanics		
Eroguenes			
Frequency:	yearly in the winter semester		
	For the award of credit points it is necessary to pass the module exam.		
Points:	The module exam contains:		
	MP/KA (KA if 5 students or more) [MP minimum 30 min / KA 60 min]		
	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen		
	der Modulprüfung. Die Modulprüfung umfasst:		
	MP/KA (KA bei 5 und mehr Teilnehmern) [MP mindestens 30 min / KA 60		
	min]		
Credit Points:	4		
Grade:	The Grade is generated from the examination result(s) with the following		
	weights (w):		
	MP/KA [w: 1]		
L	The workload is 120h. It is the result of 45h attendance and 75h self-		
VVOI NIOGU.			
	studies.		

Daten:	DAuS. MA. Nr. 3409 / Stand: 31.05.2017 \$\frac{1}{2}\$ Start: WiSe 2017			
	Prüfungs-Nr.: 45001			
Modulname:	Düsenauslegung und Sprays			
(englisch):	Nozzel Application and Spray			
Verantwortlich(e):	Chaves Salamanca, Humberto / Dr. rer. nat.			
Dozent(en):	Chaves Salamanca, Humberto / Dr. rer. nat.			
Institut(e):	Institut für Mechanik und Fluiddynamik			
Dauer:	1 Semester			
Qualifikationsziele /	Die Studierenden sollen die wesentlichen theoretischen Grundlagen der			
Kompetenzen:	Mechanismen der Zerstäubung und praxisrelevante Anwendungen			
	verstehen. Die Anwendung eines bestimmten Zerstäubers für eine			
	vorgegebene Aufgabe in Abhängigkeit von der Zähigkeit und den			
	benötigten Volumenstrom wird im Einzelnen erläutert, um den			
	Studierenden zu befähigen ein geeignetes			
	Zerstäubungssystem auszuwählen und auszulegen.			
Inhalte:	Grundbegriffe der Flüssigkeitszerteilung in Tropfen			
	Relevante Stoffdaten von Flüssigkeiten			
	Zerteilen mit Lochdüsen: Abtropfen, Laminares Zerstropfen,			
	Lineare Theorie von Rayleigh, Nicht lineare Theorie, Turbulentes			
	Zerstäuben, Düseninnenströmung			
	Lamellen- Zerstäubung: Erzeugen von Lamellen, Hohlkegel –			
	Druckdüsen, Rotations – Zerstäuber			
	Prall – Zerteilung von Tropfen			
	Ultraschall – Zerstäubung			
	Zerblasen von Flüssigkeiten bzw. Tropfen			
	Zweistoff – Düsen: Außenmischende und Innenmischende			
	Zerstäuber			
	Elektrostatische Zerstäubung			
	Thermische Zerstäubung (Flash boiling)			
	Wirkungsgrad der Zerstäubung			
	Messtechnische Grundlagen			
Typische Fachliteratur:	Lefebvre, Atomization and Sprays, Hemisphere Publ., New York, 1989			
	Bayvel et al., Liquid Atomization, Taylor & Francis, Washington, 1993			
Lehrformen:	S1 (WS): Vorlesung (2 SWS)			
	S1 (WS): Praktikum (1 SWS)			
Voraussetzungen für	Empfohlen:			
die Teilnahme:	Höhere Mathematik für Ingenieure 1, 2009-05-27			
	Höhere Mathematik für Ingenieure 2, 2009-05-27			
	Physik für Ingenieure, 2009-08-18			
	Strömungsmechanik I, 2009-05-01			
	Strömungsmechanik II, 2009-05-01			
Turnus:	jährlich im Wintersemester			
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen			
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:			
Leistungspunkten:	MP/KA (KA bei 11 und mehr Teilnehmern) [MP mindestens 45 min / KA			
	60 min]			
	PVL: Praktikum			
	PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden.			
Leistungspunkte:	4			
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)			
	Prüfungsleistung(en):			
	MP/KA [w: 1]			
Arbeitsaufwand:	Der Zeitaufwand beträgt 120h und setzt sich zusammen aus 45h			
	Präsenzzeit und 75h Selbststudium. Letzteres umfasst die Vor- und			
	Nachbereitung der Lehrveranstaltung und die Vorbereitung zur Prüfung.			

Daten:	2952 / Prüfungs-Nr.: 61801	and: 22.02.2014 🕦	Start: WiSe 2011
Modulname:	Einführung in den Gewerblichen Rechtsschutz		
(englisch):	Introduction to Intellectual Porperty Law		
Verantwortlich(e):	Ring, Gerhard / Prof. Dr.		
Dozent(en):	Ring, Gerhard / Prof. Dr.		
Institut(e):	Professur für Bürgerliches Recht, Deutsches und Europäisches		
	<u>Wirtschaftsrecht</u>		
Dauer:	1 Semester		
Qualifikationsziele /	Die Studenten sollen einen		elevantesten Inhalte des
Kompetenzen:	Gewerblichen Rechtsschutz		
Inhalte:	In der Veranstaltung wird zunächst ein kurzer Überblick über das Patentrecht, sein Wesen und Gegenstand gegeben. Sodann wird die Entstehung des Patents, insbesondere das Anmeldeverfahren, ausführlich behandelt. Anschließend wird auf die Rechtswirkungen, den Übergang sowie die Beendigung des Patents eingegangen. Zudem wird ein Einblick in weitere Bereiche des Gewerblichen Rechtsschutzes (insbesondere das Urheber-, Gebrauchsmuster-, Geschmacksmuster und Markenrecht) gewährt.		
Typische Fachliteratur:	Götting, Gewerblicher Rechtsschutz, 9. Aufl. 2010		
l ypiserie i derinteracari	Eisenmann/Jautz, Grundriss Gewerblicher Rechtsschutz und Urheberrecht, 8. Aufl. 2009		
Lehrformen:	S1 (WS): Vorlesung (2 SWS	5)	
Voraussetzungen für	Empfohlen:		
die Teilnahme:	Grundlagen des Privatrecht		
Turnus:	jährlich im Wintersemester		
Voraussetzungen für	Voraussetzung für die Verg		nkten ist das Bestehen
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:		
Leistungspunkten:	KA [90 min]		
Leistungspunkte:	3		
Note:	Die Note ergibt sich entspre Prüfungsleistung(en): KA [w: 1]	echend der Gewichtu	ng (w) aus folgenden(r)
Arbeitsaufwand:	Der Zeitaufwand beträgt 90 Präsenzzeit und 60h Selbst Nachbereitung der Lehrver Prüfung.	studium. Letzteres ur	mfasst die Vor- und

Daten:	EEMOBIL. BA. Nr. 3310 /Stand: 30.03.2020 5 Start: WiSe 2022		
Baten.	Prüfungs-Nr.: 42403		
Modulname:	Einführung in die Elektromobilität		
(englisch):	Introduction to Electric Mobility		
Verantwortlich(e):	Kertzscher, Jana / Prof. DrIng.		
Dozent(en):	Kertzscher, Jana / Prof. DrIng.		
Institut(e):	Institut für Elektrotechnik		
Dauer:	1 Semester		
Qualifikationsziele /	Ausgehend von einer Einführung in die Elektrotraktion kennen die		
Kompetenzen:	Studierenden die Topologien, deren Funktionsweise sowie die Eigenschaften von Elektro- und Hybridantrieben. Sie werden in die Lage		
	versetzt, Vorteile und Nachteile hinsichtlich Funktionsweise, Reichweite		
	und Entwicklungsaufwand zu erkennen und zu formulieren. Im zweiten		
	Teil lernen die Studierenden die Funktionsweise und Eigenschaften		
	chemischer, elektrischer und mechanischer Energiespeicher kennen. Sie		
	werden in die Lage versetzt, Vorteile und Nachteile hinsichtlich		
	Funktionsweise, Eigenschaften und Einsatz in der Elektromobilität zu		
	erkennen und zu bewerten.		
Inhalte:	Hybrid- und Elektroantriebe:		
	Hintergründe, Historie, Motivation, Rohstoffsituation, Aktueller Markt		
	Markt		
	Well-to-Wheel-Analyse Had a drief of (Tanalanian Angles)		
	Hybridantriebe (Topologien, Aufbau, Eigenschaften) Aufbau, Eigenschaften)		
	Elektroantriebe (Topologien, Aufbau, Eigenschaften)		
	Energiespeicher:		
	Klassische Energiespeicher		
	• Supercaps		
	Elektrochemische Speicher		
	Batteriemanagement		
	Lade- Entladekonzepte		
Typische Fachliteratur:	Hofmann: Hybridfahrzeuge: Ein alternatives Antriebskonzept für die		
Zukunft, Springer-Verlag; Reif: Konventioneller Antriebsstrang			
	Hybridantriebe: mit Brennstoffzellen und alternativen Kraftstoffen,		
	Teubner und Vieweg Verlag		
Lehrformen:	S1 (WS): Vorlesung (2 SWS)		
	S1 (WS): Seminar (1 SWS)		
Voraussetzungen für	Empfohlen:		
die Teilnahme:	Einführung in die Elektrotechnik, 2020-03-30		
	Elektrische Maschinen, 2020-04-13		
Turnus:	jährlich im Wintersemester		
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen		
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:		
Leistungspunkten:	AP: Schriftliche Ausarbeitung und Vortrag		
Leistungspunkte:	5		
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)		
	Prüfungsleistung(en):		
	AP: Schriftliche Ausarbeitung und Vortrag [w: 1]		
Arbeitsaufwand:	Der Zeitaufwand beträgt 150h und setzt sich zusammen aus 45h		
	Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und		
	Nachbereitung der Lehrveranstaltung und die Vorbereitung zur Prüfung.		

Daten:	ELTOF. BA. Nr. 3321 / Stand: 10.02.2017 5 Start: WiSe 2017		
	Prüfungs-Nr.: 41313		
Modulname:	Elektrische Öfen und Öfen mit Sonderatmosphären		
(englisch):	Electrical Furnaces and Furnaces with Special Atmospheres		
Verantwortlich(e):	Krause, Hartmut / Prof. DrIng.		
Dozent(en):	Lohse, Uwe / DrIng.		
	Uhlig, Volker / DrIng.		
Institut(e):	Institut für Wärmetechnik und Thermodynamik		
Dauer:	1 Semester		
Qualifikationsziele /	Fähigkeiten und Fertigkeiten zum selbständigen Entwurf und zur		
Kompetenzen:	umfassenden Gestaltung von Öfen und Erwärmungseinrichtungen mit		
	elektrischer Beheizung.		
	Vorgehensweise bei der Realisierung von sicheren Prozessen in		
	Thermoprozessanlagen unter Verwendung geregelter Atmosphären und		
	Vakua.		
Inhalte:	Allgemeine Gesetzmäßigkeiten		
	 spezifische Möglichkeiten der Elektrowärme 		
	 Widerstandserwärmung: Heizleiterwerkstoffe, indirekte W- 		
	Erwärmung Widerstandsöfen, IR-Strahlungserwärmung, direkte		
	W-Erwärmung, Hochstromofen		
	 Lichtbogenerwärmung, Lichtbogenöfen 		
	Induktionserwärmung: Prinzip, Berechnung, Erwärmung von		
	Werkstücken, Induktionsöfen, Generatoren		
	 Mikrowellenerwärmung: Prinzip, Grundlagen Berechnung, 		
	Applikatoren		
	Vakuumtechnik: Grundlagen, Vakuumerzeugung Total- und		
	Partialdruckmessung, Bauelemente von Vakuumanlagen,		
	Konstruktive Besonderheiten, Werkstoffe		
	Schutzgastechnik: Schutzgaserzeugung, Zusammensetzung, Anglyse, Anwendung von Schutzgasen, Sicherheitstechnik		
	Analyse, Anwendung von Schutzgasen, Sicherheitstechnik		
Typische Fachliteratur:	Pfeifer, Nacke, Beneke: Praxishandbuch Thermoprozesstechnik, Band I,		
	Vulkan-Verlag, 2. Auflage oder neuer Speckt: Wärme, und Stoffühortragung in der Thermenrezesstechnik		
	Specht: Wärme- und Stoffübertragung in der Thermoprozesstechnik,		
	Vulkan-Verlag, neueste Auflage		
	Kühn: Handbuch Schutz- und Reaktionsgastechnik, Vulkan-Verlag, 2016		
	oder neuer		
	Hoffmann, D.M. et al: Handbook of vacuum science and technology, Academic Press, 1997 oder neuer		
	Palic: Elektrische Wärme- und Heiztechnik, Expert-Verlag		
	Kohtz: Wärmebehandlung metallischer Werkstoffe, VDI-Verlag		
	LOI-Taschenbuch für Thermoprozesstechnik, Essen, Vulkan-Verlag		
Lehrformen:	S1 (WS): Vorlesung (2 SWS)		
	S1 (WS): Übung (1 SWS)		
Voraussetzungen für	Empfohlen:		
die Teilnahme:	Technische Thermodynamik II, 2009-10-08		
	Technische Thermodynamik I, 2009-05-01		
	Grundlagen der Elektrotechnik, 2014-03-01		
Turnus:	jährlich im Wintersemester		
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen		
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:		
Leistungspunkten:	MP [30 min]		
Leistungspunkte:	4		
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)		
	Prüfungsleistung(en):		
	MP [w: 1]		

Arbeitsaufwand:	Der Zeitaufwand beträgt 120h und setzt sich zusammen aus 45h
	Präsenzzeit und 75h Selbststudium. Letzteres umfasst die Vor- und
	Nachbereitung der Lehrveranstaltung und Prüfungsvorbereitung.

Daten:	ELSYS. MA. Nr. 3125 / Stand: 01.03.2014 5 Start: SoSe 2014		
Baten.	Prüfungs-Nr.: 41312		
Modulname:	Elektroenergiesysteme		
(englisch):	Electrical Energy Systems		
Verantwortlich(e):	<u>, , , </u>		
Dozent(en):	Kertzscher, Jana / Prof. DrIng.		
Institut(e):	Klingner, Matthias / Prof. DrIng. Institut für Elektrotechnik		
	1 Semester		
Dauer: Qualifikationsziele /			
Kompetenzen:	Die Studierenden erlernen in der Vorlesung die Grundlagen sowie		
Kompetenzen:	Elemente der Elektroenergiesysteme. Sie werden in die Lage versetzt,		
	grundlegende Berechnungen an Elektroenergiesystemen selbständig		
lua la a lita :	durchzuführen und auf verschiedene Versorgungssysteme anzuwenden.		
Inhalte:	Energieressourcen		
	Regenerative Energien, Versorgungsmix		
	Verbundsysteme		
	Versorgungssicherheit		
	Danel and Danemalaistan		
	Regel- und Reserveleistung		
	Wirk- und Blindleistung		
	Kraftwerkstechnik		
	Übertragungsnetze		
	Netzelemente		
	Lastflussrechnung		
	Netzzustandsschätzer		
	Kurzschlussstromberechnung und Ausfallsimulation		
	dynamische Ausgleichsvorgänge und Netzstabilität		
Typische Fachliteratur:	Schäfer, H.: Lexikon der Energietechnik, VDI-Verlag (1994); G.		
'	Hosemann (Hrsg.).: Elektrische Energietechnik, Springer-Verlag 2001;		
	Noack, F.: Einführung in die elektrische Energietechnik;		
	Schwab, A. J.: Elektroenergiesysteme: Erzeugung, Transport,		
	Übertragung und Verteilung elektrischer Energie;		
	Crastan, V.: Elektrische Energieversorgung Teil 1 und 2		
Lehrformen:	S1 (SS): Vorlesung (2 SWS)		
	S1 (SS): Übung (1 SWS)		
Voraussetzungen für	Empfohlen:		
die Teilnahme:	Einführung in die Elektrotechnik, 2014-12-04		
	Elektrische Maschinen und Antriebe, 2014-03-01		
	Grundlagen der Elektrotechnik, 2014-03-01		
Turnus:	jährlich im Sommersemester		
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen		
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:		
Leistungspunkten:	KA [90 min]		
Leistungspunkte:	N [SO HIIII]		
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)		
	Prüfungsleistung(en):		
	KA [w: 1]		
Arbeitsaufwand:	Der Zeitaufwand beträgt 120h und setzt sich zusammen aus 45h		
Mineitzanimaila:	Präsenzzeit und 75h Selbststudium. Letzteres umfasst die Vor und		
	Nachbereitung der Lehrveranstaltung und die Vorbereitung auf die		
	Klausurarbeit.		

Daten:	EAGEB. MA. Nr. 3410 / Stand: 05.07.2016 Start: WiSe 2012
Modulname:	Prüfungs-Nr.: 41212 Energieautarke Gebäude (Grundlagen und Anwendungen)
(englisch):	Energy-Autonomous Buildings
Verantwortlich(e):	Fieback, Tobias / Prof. Dr. Ing.
Dozent(en):	Leukefeld, Timo / DiplIng.
	Riedel, Stephan / DiplPhys.
	Fieback, Tobias / Prof. Dr. Ing.
Institut(e):	Institut für Wärmetechnik und Thermodynamik
Dauer:	1 Semester
Qualifikationsziele /	Die Studierenden sollen in der Lage sein, neue Gebäude mittels
Kompetenzen:	Solarthermie und Photovoltaik weitestgehend energieautark zu konzipieren und zu dimensionieren. Dazu gehören die physikalischen Grundlagen, Kenntnisse über den Stand der Technik auf diesen Gebieten sowie die Anwendungsbeispiele aus der Praxis.
Inhalte:	Grundlagen auf den Gebieten Thermodynamik, Wärmeübertragung und
	Energieeinsparverordnung, Theorie der Solarthermie und deren
	praktische Umsetzung; Theorie der Photovoltaik und deren praktische
	Umsetzung. Bestandteil der Veranstaltung sind Exkursionen zu Anlagen
	der Solarthermie und Photovoltaik sowie zu zwei energieautarken
	Gebäuden, die sich im Aufbau und/oder im Betrieb befinden.
Typische Fachliteratur:	N. Khartchenko: Thermische Solaranlagen. Verlag für Wissenschaft und
, , , , , , , , , , , , , , , , , , , ,	Forschung, Berlin, 2004, ISBN 3-89700-372-4
	Energieeinsparverordnung – EnEV, Bundesgesetzblatt
	Ralf Haselhuhn et al., Photovoltaische Anlagen, Berlin, 2010, ISBN
	978-3000237348: Leitfaden
Lehrformen:	S1 (WS): Vorlesung (2 SWS)
	S1 (WS): In Gestalt von Exkursionen / Übung (1 SWS)
Voraussetzungen für	Empfohlen:
die Teilnahme:	Wärme- und Stoffübertragung, 2009-05-01
are remidiffic.	Grundlagen der Elektrotechnik, 2014-03-01
	Physik für Ingenieure, 2009-08-18
	Allgemeine physikalische Grundkenntnisse. Vertiefte Kenntnisse auf
	Gebieten wie z.B. Wärmeübertragung oder Elektrotechnik sind hilfreich
Turnus:	iährlich im Wintersemester
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:
Leistungspunkten:	KA [120 min]
Leistungspunkten.	PVL: Teilnahme an den angebotenen Exkursionen
	<u> </u>
Loistungspunktor	PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden.
Leistungspunkte: Note:	Die Note ergibt sich entenrechand der Cowiehtung (w) aus felgenden(r)
INULE.	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)
	Prüfungsleistung(en):
Aulanikan of orang	KA [w: 1]
Arbeitsaufwand:	Der Zeitaufwand beträgt 120h und setzt sich zusammen aus 45h
	Präsenzzeit und 75h Selbststudium. Letzteres umfasst die Vor- und
	Nachbereitung der Lehrveranstaltung und die Prüfungsvorbereitung.

Daten:	ENNO. MA. Nr. 3355 / Stand: 26.03.2020 Start: WiSe 2012
	Prüfungs-Nr.: 42109
Modulname:	Energienetze und Netzoptimierung
(englisch):	Energy Nets and Net Optimization
Verantwortlich(e):	Rehkopf, Andreas / Prof. DrIng.
Dozent(en):	Rehkopf, Andreas / Prof. DrIng.
Institut(e):	Institut für Automatisierungstechnik
Dauer:	1 Semester
Qualifikationsziele /	
-	Die Studierenden sollen ein solides Verständnis der grundlegenden
Kompetenzen:	Prinzipien von Energienetzen und deren optimaler Betriebsführung
la la a la a	erlangen und anwenden können
Inhalte:	Überblick, Entwicklung und Bedeutung der Energienetze Blausikalische alaktrate abnische Grundlagen. Controllegen.
	Physikalisch-elektrotechnische Grundlagen
	Grundlegende mathematische Beschreibungsmethoden
	(Netztheorie)
	Automatisierung von Energienetzen
	Einführung in die diskrete Optimierung
	Anwendung der diskreten Optimierung auf verteilte
	Energiesysteme am Beispiel eines virtuellen Kraftwerks (u.a.
	Praktikum)
	Aktueller Stand der Energieforschung im Bereich dezentraler
	Energiesysteme unter maßgeblicher Einbeziehung regenerativer
	Energieträger
Typische Fachliteratur:	Skripte
	ausgewählte Literatur
	Erkenntnisse und Ergebnisse aus aktuellen Forschungsprojekten
Lehrformen:	S1 (WS): Vorlesung (2 SWS)
	S1 (WS): Übung (1 SWS)
	S1 (WS): Praktikum (1 SWS)
Voraussetzungen für	Empfohlen:
die Teilnahme:	Automatisierungssysteme, 2020-03-26
	Mess- und Regelungstechnik, 2020-03-26
	Erfolgreiche Teilnahme aller Lehrveranstaltungen des Grundstudiums
	zur Elektrotechnik, Thermodynamik und Ingenieurmathematik.
Turnus:	jährlich im Wintersemester
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:
Leistungspunkten:	MP [45 bis 60 min]
	PVL: Abschluss des Praktikums mit Testat
	PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden.
Leistungspunkte:	5
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)
	Prüfungsleistung(en):
	MP [w: 1]
 Arbeitsaufwand:	Der Zeitaufwand beträgt 150h und setzt sich zusammen aus 60h
mi scresaurwana.	Präsenzzeit und 90h Selbststudium. Letzteres umfasst die Vor- und
	Nachbereitung der Lehrveranstaltungen, die Praktikums- und
	1
	Prüfungsvorbereitungen.

Daten:	ERDWÄRME. MA. Nr. Stand: 05.07.2016 5 Start: SoSe 2017
Baten.	3411 / Prüfungs-Nr.:
	41214
Modulname:	Erdwärmenutzung (Grundlagen und Anwendung)
(englisch):	Usage of Geothermal Energy (Fundamentals and Application)
Verantwortlich(e):	Fieback, Tobias / Prof. Dr. Ing.
Dozent(en):	Grimm, Rüdiger / DiplGeologe
	Fieback, Tobias / Prof. Dr. Ing.
Institut(e):	Institut für Wärmetechnik und Thermodynamik
Dauer:	1 Semester
Qualifikationsziele /	Die Studierenden sollen in der Lage sein, Anlagen zur Erdwärmenutzung
Kompetenzen:	auszulegen und zu dimensionieren. Dazu gehören die physikalischen
	Grundlagen, Kenntnisse über den Stand der Technik auf diesem Gebiet
	sowie die Anwendung in der Praxis.
Inhalte:	Grundlagen auf den Gebieten Thermodynamik, Wärmeübertragung und
	Wärmepumpentechnik; Theorie der Erdwärmenutzung und deren
	praktische Umsetzung. Bestandteil der Veranstaltung sind Exkursionen
	zu Anlagen der Geothermie, die sich im Aufbau und/oder im Betrieb
	befinden.
Typische Fachliteratur:	M. Tholen & S. Walker-Hertkorn: Arbeitshilfe Geothermie – Grundlagen
	für oberflächennahe Erdwärmesondenbohrungen. Verlag wvgw, Bonn,
	2008, ISBN 3-89554-167-2
Lehrformen:	S1 (SS): Vorlesung (2 SWS)
	S1 (SS): In Gestalt von Exkursionen / Übung (1 SWS)
Voraussetzungen für	Empfohlen:
die Teilnahme:	Physik für Ingenieure, 2009-08-18
	Vertiefte Kenntnisse auf Gebieten wie z.B. Wärmeübertragung oder
	Geologie sind hilfreich.
Turnus:	jährlich im Sommersemester
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:
Leistungspunkten:	KA [120 min]
	PVL: Teilnahme an den angebotenen Exkursionen
	PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden.
Leistungspunkte:	4
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)
	Prüfungsleistung(en):
	KA [w: 1]
Arbeitsaufwand:	Der Zeitaufwand beträgt 120h und setzt sich zusammen aus 45h
	Präsenzzeit und 75h Selbststudium. Letzteres umfaßt die Vor- und
	Nachbereitung der Lehrveranstaltung und die Prüfungsvorbereitung.

Daten:	FMPML. Ma. Nr. 3362 / Stand: 21.04.2021 \$\frac{1}{2}\$ Start: SoSe 2012
	Prüfungs-Nr.: 10911
Modulname:	Fortgeschrittene Methoden der Programmierung in Matlab
(englisch):	Advanced Programming in Matlab
Verantwortlich(e):	Prüfert, Uwe / Dr. rer. nat.
Dozent(en):	Prüfert, Uwe / Dr. rer. nat.
Institut(e):	Institut für Numerische Mathematik und Optimierung
Dauer:	1 Semester
Qualifikationsziele /	Die Studierenden besitzen vertiefte Kenntnisse der Programmierung in
Kompetenzen:	Matlab. Sie können die objektorientierte Programmierung (OOP)
	anwenden. Sie sind in der Lage, Matlab zur Analyse von
	Anwendungsproblemen zu nutzen und geeignete Klassen zu
	konstruieren und zu implementieren.
Inhalte:	Es werden die folgenden Aspekte behandelt:
	Einführung in die Konzepte der OOP; Analyse von Daten und Ableitung
	geeigneter Datenstrukturen; Konstruktion von Klassen; Implementierung
	von Klassen; Definition von Methoden; Besonderheiten von Matlab;
	Typisierung; Fehlerbehandlung
Typische Fachliteratur:	A. H. Register: A Guide to MATLAB Object-Oriented Programming
	S. McGarrity: Introduction to Object-Oriented Programming in MATLAB
Lehrformen:	S1 (SS): Vorlesung (2 SWS)
	S1 (SS): Übung (1 SWS)
Voraussetzungen für	Empfohlen:
die Teilnahme:	Grundkenntnisse der Programmierung. Kenntnisse der Programmierung
	in Matlab sind hilfreich, aber nicht notwendig.
Turnus:	jährlich im Sommersemester
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:
Leistungspunkten:	KA [60 min]
	PVL: Programmieraufgabe
	PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden.
Leistungspunkte:	5
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)
	Prüfungsleistung(en):
	KA [w: 1]
Arbeitsaufwand:	Der Zeitaufwand beträgt 150h und setzt sich zusammen aus 45h
	Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und
	Nachbereitung der Lehrveranstaltung, die Programmieraufgabe als
	Prüfungsvorleistung sowie die Prüfungsvorbereitungen.

Daten:	GASANLT. BA. Nr. 583 / Stand: 07.04.2017 📜 Start: SoSe 2017
	Prüfungs-Nr.: 41402
Modulname:	Gasanlagentechnik
(englisch):	Gas Plant Engineering
Verantwortlich(e):	Krause, Hartmut / Prof. DrIng.
Dozent(en):	Krause, Hartmut / Prof. DrIng.
Institut(e):	Institut für Wärmetechnik und Thermodynamik
Dauer:	1 Semester
Qualifikationsziele /	Studierende sollen in der Lage sein Aufbau und Funktionsweise von
Kompetenzen:	Komponenten der Gasversorgung zu verstehen. Im Ergebnis der
Kompetenzen.	1 '
	Veranstaltung sollen sie die Befähigung haben zur selbständigen
	Analyse und Lösung von Aufgaben der Planung und des Einsatzes von
La la a la a	Anlagen der öffentlichen Gasversorgung.
Inhalte:	Überblick über Aufbau und Funktion der Gasanlagen der öffentlichen
	Gasversorgungskette. Mit den Schwerpunkten:
	Erdgasförderung, Gaserzeugung, Gasspeicherung,
	Flüssig-Erdgas-Technologien (Verflüssigung, Verdampfung)
	Gasaufbereitung, Gasmischanlagen
	Verdichteranlagen
	Fern- und Regionalleitungssysteme, kommunale
	Versorgungsnetze
	Gasdruckregel- und Gasmessanlagen
	Anlagen zur Odorierung von Gasen
	Gasnetzanschluss Erneuerbarer Gase, Gaseinspeiseanlagen
	Gasnetzanschluss für Verbraucher
	Automatisierung von Gasnetzen, Dispatching, Smart Grid
	Technologien
Typische Fachliteratur:	Hohmann e.a. Hrsg.: Handbuch der Gasversorgungstechnik, Deutscher
, position definition death	Industrieverlag, München;
	Mischner, Hrsg.: gas2energy.net – Systemplanerische Grundlagen der
	Gasversorgung, Deutscher Industrieverlag, München;
	Cerbe, Hrsg.: Grundlagen der Gastechnik. Hanser Verlag, München;
	Es sollte jeweils die letzte Auflage genutzt werden sowie die in der
	1 7
Lehrformen:	ersten Vorlesung angegebene, aktuelle Spezialliteratur.
	S1 (SS): Vorlesung (3 SWS)
Voraussetzungen für	Empfohlen:
die Teilnahme:	Einführung in die Gastechnik, 2009-05-01
	Zzgl. der Empfohlenen Fächer aus der Veranstaltung "Einführung in die
T	Gastechnik
Turnus:	jährlich im Sommersemester
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:
Leistungspunkten:	MP/KA (KA bei 6 und mehr Teilnehmern) [MP mindestens 30 min / KA 90
	min]
Leistungspunkte:	5 Die Nete errikt eine ersternenhand der Cowiektwer (w.) aus falmender (s.)
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)
	Prüfungsleistung(en):
	MP/KA [w: 1]
Arbeitsaufwand:	Der Zeitaufwand beträgt 150h und setzt sich zusammen aus 45h
	Präsenzzeit und 105h Selbststudium. Letzteres umfasst das
	Nacharbeiten der Vorlesung, die Bearbeitung häuslicher Übungen und
	die Prüfungsvorbereitung.

Daten:	GMODTP. MA. Nr. 3170 /Stand: 21.06.2017 5 Start: SoSe 2018
	Prüfungs-Nr.: 40107
Modulname:	Grundlagen der Modellierung Thermischer Prozesse
(englisch):	Fundamentals of Thermal Process Modelling
Verantwortlich(e):	Bräuer, Andreas / Prof. DrIng.
Dozent(en):	Bräuer, Andreas / Prof. DrIng.
Institut(e):	Institut für Thermische Verfahrenstechnik, Umwelt- und
	<u>Naturstoffverfahrenstechnik</u>
Dauer:	2 Semester
Qualifikationsziele /	Ziel der Lehrveranstaltung ist es die Grundlagen der Modellierung in der
Kompetenzen:	thermischen Verfahrens- und Prozesstechnik zu vermitteln und diese an
	konkreten Beispielen anwenden zu können. Weiterhin sollen die
	Grundlagen der Prozessentwicklung (der Prozesssynthese) erlernt
	werden. Außerdem sollen das Wissen um die Modellbildung praktisch
	angewendet werden.
Inhalte:	Lehrveranstaltung Dynamische und stationäre Modelle:
	Grundlagen der Modellierung
	Modellbildung
	Lösung von Modellen
	Dynamische Modelle
	Grundlagen der Prozessanalyse
	No harve go got a litera a Dana a consumble a cons
	Lehrveranstaltung Prozesssynthese:
	Grundlagen der Prozessentwicklung
	Grundlagen der Prozessoptimierung
	Grundlagen der Prozessintegration
	ordinalagen der 1702essintegration
	Lehrveranstaltung Prozessmodellierung:
	- Draktische Medellfermulierung
	Praktische Modellformulierung Numerische Läsung von stationären und dynamischen Modellen
	Numerische Lösung von stationären und dynamischen Modellen Praktische Controllability Analyse
Typische Fachliteratur:	 Praktische Controllability Analyse Seader, J. D., and E. J. Henley, Separation Process Principles, Wiley,
l ypische i achiliteratur.	2006.
	Doherty, M. F., and M. F. Malone, Conceptual Design of Distillation
	Systems, McGraw-Hill, 2001.
	Smith, R., Chemical Process Design and Integration, Wiley, 2005.
	Douglas, J. M., Conceptual Design of Chemical Processes, McGraw-Hill,
	1988.
Lehrformen:	S1 (SS): Dynamische und stationäre Modelle / Vorlesung (2 SWS)
	S1 (SS): Dynamische und stationäre Modelle / Übung (1 SWS)
	S1 (SS): Prozessmodellierung / Praktikum (3 SWS)
	S2 (WS): Prozesssynthese / Vorlesung (1 SWS)
	S2 (WS): Prozesssynthese / Übung (1 SWS)
Voraussetzungen für	Empfohlen:
die Teilnahme:	BA Ingenieurwissenschaften, Wirtschaftingenieurwesen, Ang.
T	Naturwissenschaft
Turnus:	jährlich im Sommersemester
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:
Leistungspunkten:	AP: Bewertung der Übungsaufgaben MP [60 min]
Leistungspunkte:	7
_cistarigsparikte.	ľ

Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): AP: Bewertung der Übungsaufgaben [w: 1] MP [w: 2]
Arbeitsaufwand:	Der Zeitaufwand beträgt 210h und setzt sich zusammen aus 120h Präsenzzeit und 90h Selbststudium. Letzteres umfasst Vor- und Nachbereitung der Vorlesung, sowie praktische Übung am Rechner.

Daten:	GREXSCH. MA. Nr. 3195 Stand: 29.04.2010 Start: WiSe 2011
Madulaaaa	/ Prüfungs-Nr.: 44201
Modulname:	Grundlagen des Explosionsschutzes
(englisch):	Fundamentals of Explosion Prevention
Verantwortlich(e):	Redeker, Tammo / Prof. Dr. rer. nat.
Dozent(en):	Redeker, Tammo / Prof. Dr. rer. nat.
Institut(e):	Institut für Energieverfahrenstechnik und Chemieingenieurwesen
Dauer:	1 Semester
Qualifikationsziele /	Ziel ist die Vermittlung von Kenntnissen zu den Grundlagen der Sicher-
Kompetenzen:	heitstechnik und des Explosionsschutzes beim Umgang mit brennbaren
	Gasen, Dämpfen und Stäuben sowie hybriden Gemischen.
Inhalte:	Es werden sicherheitstechnische Kenngrößen für brennbare Gase,
	Dämpfe und Stäube sowie hybride Stoffgemische, für Zündquellen sowie
	für explosionsdruckfesten Einschluss und Explosionsdruckentlastung be-
	handelt, es schließen sich Explosionsbeurteilung und Festlegung von
	Schutzmaßnahmen für explosionsgefährdete Arbeitsbereiche und Anla-
	gen, Explosionsschutzmaßnahmen für Hersteller von Geräten und
	Schutzsystemen sowie Explosionsschutz im Bergbau an. Abschließend
	werden europäische Richtlinien und Gesetze, Verordnungen, Technische
	Regeln und Normen zum Explosionsschutz und dem damit verbundenen
	Brandschutz betrachtet.
Typische Fachliteratur:	Interne Lehrmaterialien zur Lehrveranstaltung
Lehrformen:	S1 (WS): Grundlagen des Explosionsschutzes / Vorlesung (2 SWS)
Voraussetzungen für	Empfohlen:
die Teilnahme:	Kenntnisse der gymnasialen Oberstufe
Turnus:	jährlich im Wintersemester
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:
Leistungspunkten:	KA [90 min]
Leistungspunkte:	3
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)
	Prüfungsleistung(en):
	KA [w: 1]
Arbeitsaufwand:	Der Zeitaufwand beträgt 90h und setzt sich zusammen aus 30h
	Präsenzzeit und 60h Selbststudium. Letzteres umfasst die Vor- und
	Nachbereitung der LV sowie die Prüfungsvorbereitungen.
	inactive feitung der EV sowie die Frandrigsvorbereitungen.

Daten:	IEVSORG MA. Nr. 3484 / Stand: 19.04.2021 ₺ Start: WiSe 2016
	Prüfungs-Nr.: 40415
Modulname:	Industrielle Energieversorgung
(englisch):	Industrial Energy Supply
Verantwortlich(e):	<u>Gräbner, Martin / Prof. DrIng.</u>
Dozent(en):	Gräbner, Martin / Prof. DrIng.
Institut(e):	Institut für Energieverfahrenstechnik und Chemieingenieurwesen
Dauer:	1 Semester
Qualifikationsziele /	Ziel des Moduls ist die Vermittlung von Kenntnissen auf den Gebieten
Kompetenzen:	der Energiewirtschaft mit dem Schwerpunkt Großkraftwerkstechnik und für die Versorgung von Industrieanlagen mit verschiedenen Medien, Gasen und Elektrizität. Die Studierenden werden mit den Grundlagen der industriellen Kraftwerkstechnik und der infrastrukturellen Versorgung von Industrieanlagen vertraut gemacht. Sie werden befähigt, Projekte auf dem Gebiet der konventionellen Kraftwerkstechnik oder der Medienversorgung für Industrieanlagen vorzubereiten
	(Konzeption und Bilanzierung).
Inhalte:	Die Vorlesung Konventionelle Kraftwerkstechnik vermittelt, ausgehend von den an die moderne Energiewirtschaft gestellten Anforderungen, die thermodynamischen Grundlagen von Kreisprozessen, vor allem des Rankine- und Joule-Prozesses. Einen weiteren Schwerpunkt stellen der Kombiprozess mit der Verbindung von Gas- und Dampfturbinenprozess sowie der IGCC-Prozess mit integrierter Vergasungsanlage dar. Auf Anlagen und Prozesse zur Kraft-Wärme-Kopplung wird ebenfalls eingegangen. Des Weiteren werden wesentliche Grundlagen der nuklearen Energiegewinnung vorgestellt. Außerdem werden Richtlinien und Maßnahmen zur Emissionsminderung vermittelt. In der Vorlesung Industrielle Energie- und Medienversorgung werden Grundlagen der Bereitstellung von Prozess-, Klima-, Kaltwasser, Kühlsohle, Ammoniak, Kältemittel etc. behandelt. Es wird auf Kälteerzeugung und die Versorgung mit anderen Medien, wie z. B. technischen Gasen oder Wärme für chemische Industrieanlagen eingegangen. Des Weiteren werden der Einfluss des Energiemarktes auf die Versorgungsstrukturen sowie deren Wandel bedingt durch den steigenden erneuerbaren Anteil an der Stromerzeugung diskutiert.
Typische Fachliteratur:	Interne Lehrmaterialien; Rebhan: Energiehandbuch. Springer-Verlag,
L - l C	2002; Zahoransky: Energietechnik. Vieweg, 2004
Lehrformen:	S1 (WS): Konventionelle Kraftwerkstechnik / Vorlesung (2 SWS) S1 (WS): Industrielle Energie- u. Medienversorgung / Vorlesung (1 SWS)
Voraussetzungen für	Empfohlen:
die Teilnahme:	Technische Thermodynamik II, 2009-10-08 Technische Thermodynamik I, 2009-05-01 Physik für Ingenieure, 2009-08-18
Turnus:	jährlich im Wintersemester
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:
Leistungspunkten:	MP/KA (KA bei 11 und mehr Teilnehmern) [MP mindestens 40 min / KA 120 min]
Leistungspunkte:	5
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): MP/KA [w: 1]
Arbeitsaufwand:	Der Zeitaufwand beträgt 150h und setzt sich zusammen aus 45h Präsenzzeit und 105h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltungen u. die Prüfungsvorbereitungen.

Daten:	INDPV. MA. Nr. 3017 / Stand: 27.07.2011 5 Start: WiSe 2010
Batem	Prüfungs-Nr.: 20801
Modulname:	Industrielle Photovoltaik
(englisch):	Industrial Photovoltaic
Verantwortlich(e):	Müller, Armin / Prof. Dr.
Dozent(en):	Müller, Armin / Prof. Dr.
Institut(e):	Institut für Technische Chemie
Dauer:	1 Semester
Qualifikationsziele /	Die Studierenden sollen die wesentlichen Fertigungsschritte zur
Kompetenzen:	Herstellung von photovoltaischen Systemen kennen lernen und die
	hierfür notwendigen naturwissenschaftlichen Grundlagen auf die
	industrielle Fertigung anwenden. Weiterhin wird auf das
	gesellschaftliche und wirtschaftliche Umfeld der Photovoltaik
	eingegangen.
Inhalte:	Chemisch - physikalische Grundlagen der kristallinen Silicium -
	Photovoltaik
	Herstellung und Kristallisation von Reinstsilicium
	Mechanische Bearbeitung von Silicium
	Herstellung von Solarzellen und Solarmodulen
	Alternative PV-Technologien
	Maschinen und Anlagen für die PV-Industrie
Typische Fachliteratur:	A. Goetzberger: Sonnenenergie Photovoltaik; J. Grabmeier: Silicon;
	A. Luque: Handbook of Photovoltaic Science and Engineering
Lehrformen:	S1 (WS): Vorlesung (2 SWS)
	S1 (WS): Exkursion (0,5 d)
Voraussetzungen für	Empfohlen:
die Teilnahme:	Naturwissenschaftlich – technische Grundlagen
Turnus:	jährlich im Wintersemester
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:
Leistungspunkten:	KA [90 min]
Leistungspunkte:	3
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)
	Prüfungsleistung(en):
	KA [w: 1]
Arbeitsaufwand:	Der Zeitaufwand beträgt 90h und setzt sich zusammen aus 34h
	Präsenzzeit und 56h Selbststudium. Das Selbststudium umfasst die Vor-
	und Nachbereitung der Lehrveranstaltungen und die
	Prüfungsvorbereitung.

Daten:	INVUFIN. BA. Nr. 054 / Stand: 03.06.2009 \$\frac{1}{2}\$ Start: WiSe 2009
	Prüfungs-Nr.: 60801
Modulname:	Investition und Finanzierung
(englisch):	Fundamentals of Investments and Finance
Verantwortlich(e):	Horsch, Andreas / Prof. Dr.
Dozent(en):	Horsch, Andreas / Prof. Dr.
Institut(e):	Professur Allgemeine BWL, mit dem Schwerpunkt Investition und
	<u>Finanzierung</u>
Dauer:	1 Semester
Qualifikationsziele /	Die Studenten sollen die wichtigsten Verfahren der Investitionsrechnung
Kompetenzen:	unter Sicherheit erlernen. Ferner sollen sie die Charakteristika der
	grundlegenden Finanzierungsvarianten kennen und ihre Einsatz-
	möglichkeiten und -grenzen bewerten können.
Inhalte:	Ausgehend vom finanzwirtschaftlichen Gleichgewicht der Unternehmung
	behandelt die Veranstaltung zunächst die wichtigsten Verfahren der
	statischen und vor allem dynamischen Investitionsrechnung. Im
	Anschluss werden die wichtigsten Varianten der Unternehmensfinan-
	zierung systematisiert und in ihren Grundzügen dargestellt.
	Zentrale Inhalte: Finanzwirtschaftliches Gleichgewicht, Kapitalwert,
	Interner Zinsfuß, Erweiterungen investitionstheoretischer Basiskalküle,
	Finanzierungsarten, Beteiligungsfinanzierung, Kreditfinanzierung,
	Zwischenformen der Finanzierung
Typische Fachliteratur:	Blohm/Lüder/Schäfer: Investition, 9. Aufl., München (Vahlen) 2006, akt.
	Aufl.
	Kruschwitz: Finanzmathematik, 4. Aufl., München (Vahlen) 2006, akt.
	Aufl.
	Rehkugler: Grundzüge der Finanzwirtschaft, München/Wien (Olden-
	bourg) 2007, akt. Aufl.
	Zantow: Finanzwirtschaft der Unternehmung, 2. Aufl., München et al.
	(Pearson) 2007, akt. Aufl.
Lehrformen:	S1 (WS): Vorlesung (2 SWS)
	S1 (WS): Übung (2 SWS)
Voraussetzungen für	Empfohlen:
die Teilnahme:	Finanzmathematik, 2009-06-01
	Bereitschaft für die Auseinandersetzung mit finanzwirtschaftlichen
_	Zusammenhängen (Cashflow-Rechnung)
Turnus:	jährlich im Wintersemester
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:
Leistungspunkten:	KA [90 min]
Leistungspunkte:	Die Note ergibt eich entenrechend der Cowiehtung (w) aus felgenden(r)
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)
	Prüfungsleistung(en):
Arboitcoufwand.	KA [w: 1]
Arbeitsaufwand:	Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 60h Präsenzzeit und 120h Selbststudium. Letzteres umfasst die Nachbe-
	reitung der Vorlesung, die Vorbereitung der Übung sowie generelle
	Literaturarbeit.

Daten:	KONWTAN. MA. Nr. Stand: 10.02.2017 🖫 Start: WiSe 2017
	2932 / Prüfungs-Nr.:
	43701
Modulname:	Konstruktion wärmetechnischer Anlagen
(englisch):	Engineering of Thermoprocessing Plants
Verantwortlich(e):	Krause, Hartmut / Prof. DrIng.
Dozent(en):	Uhlig, Volker / DrIng.
Institut(e):	Institut für Wärmetechnik und Thermodynamik
Dauer:	1 Semester
Qualifikationsziele /	Fähigkeiten/ Fertigkeiten in der Projektierung und Konstruktion von
Kompetenzen:	wärmetechnischen Anlagen mit dem Schwerpunkt
·	Thermoprozessanlagen.
Inhalte:	Feuerfestkonstruktion
	Stahlbau-Konstruktion
	Anlagengehäuse mit Türen und Öffnungen
	Laufstege, Podeste, Treppen, Leitern
	Transporteinrichtungen
	Brenner, Rohrleitungen und Kanäle
	Bau und Inbetriebnahme
Typische Fachliteratur:	Pfeifer, H., Nacke, B., Beneke, F.: Praxishandbuch
, , , , , , , , , , , , , , , , , , , ,	Thermoprozesstechnik. Band I. Essen:Vulkan-Verlag 2010
	Pfeifer, Nacke, Beneke: Praxishandbuch Thermoprozesstechnik, Band II,
	Vulkan-Verlag, 2. Auflage oder neuer Autorenkollektiv: Feuerfestbau:
	Stoffe - Konstruktion - Ausführung. 3. Auflage. Essen: Vulkan-Verlag
	2003 oder neuer
	Walter, G. (Hrsg.): Arbeitsblätter zur Konstruktion von
	wärmetechnischen Anlagen. Freiberg: TU Bergakademie, internes
	Lehrmaterial
Lehrformen:	S1 (WS): Vorlesung (4 SWS)
	S1 (WS): Übung (1 SWS)
Voraussetzungen für	Empfohlen:
die Teilnahme:	Technische Mechanik A - Statik, 2009-05-01
	Technische Mechanik B - Festigkeitslehre, 2009-05-01
	Technische Mechanik C - Dynamik, 2009-05-01
	Wärmetechnische Prozessgestaltung und Wärmetechnische
	Berechnungen, 2011-03-01
	Konstruktionslehre, 2009-05-01
Turnus:	jährlich im Wintersemester
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:
Leistungspunkten:	MP [30 min]
	PVL: Konstruktionsbelege
	PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden.
Leistungspunkte:	7
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)
	Prüfungsleistung(en):
	MP [w: 1]
Arbeitsaufwand:	Der Zeitaufwand beträgt 210h und setzt sich zusammen aus 75h
	Präsenzzeit und 135h Selbststudium. Letzteres umfasst die Vor- und
	Nachbereitung der Vorlesung und Übung sowie die Anfertigung von
	Konstruktionsbelegen.
	rener and one general

Modulname: Master Thesis Energietechnik mit Kolloquium (englisch): Master Thesis Energy Engineering with Colloquium Schwarze. Rüdiger / Prof. DrIng. Prüfer des Studiegrangs Dozent(en): Institut (e): Institut für Mechanik und Fluiddynamik Fakultät für Maschinenbau. Verfahrens- und Energietechnik Dauer: 1 Semester Qualifikationsziele / Kompetenzen: Aufgabenstellung aus einem Forschungs- oder Anwendungsgebiet der Energietechnik berufstypische Arbeitsmittel und -methoden anzuwenden. Anfertigung einer ingenieurwissenschaftlichen Arbeit. Typische Fachliteratur: Anfertigung einer ingenieurwissenschaftlichen Arbeiten an der TU Bergakademie Freiberg in der jeweils geltenden Fassung; DIN 1422, Teil 4; Themenspezifische Fachliteratur wird vom Betreuer benannt. S1: Unterweisung, Konsulationen / Abschlussarbeit Obligatorisch: Projektarbeit Energietechnik, 2017-06-22 - Nachweis von 2 Fachexkursionen - Antritt aller Modulprüfungen des 1. und 2 : Fachsemesters (durch Ablegen eines Prüfungsversuchs von mindestens einer Prüfungsleistung pro Modul) - höchstens drei offene Prüfungsleistungen in noch nicht abgeschlossenen Modulen - Zulassungsvoraussetzungen des Kolloquiums: Erfolgreicher Abschluss aller übrigen Module des Masterstudienganges Energietechnik ständig Voraussetzungen für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: AP†: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) AP†: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [60 min] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 900h. Dieser beinhaltet die Auswertung und	Daten:	MTH. MA. Nr. 3467 / Stand: 22.06.2017 \$ Start: SoSe 2018
Modulname: Master Thesis Energy ierpidierding with Colloquium (einglisch): Master Thesis Energy Engineering with Colloquium (cinglisch): Master Thesis Energy Engineering with Colloquium Schwarze, Rüdiger / Prof. DrIng. Prüfer des Studiengangs Prüfer des Studiengangs Institut für Mechanik und Fluiddynamik Fakultät für Maschinenbau, Verfahrens- und Energietechnik Dauer: 1 Semester 1 Semester 2 Je Studierenden sollen die Fähigkeit erwerben, anhand einer konkreten Aufgabenstellung aus einem Forschungs- oder Anwendungsgebiet der Energietechnik berufstypische Arbeitsmittel und -methoden anzuwenden. Inhalte: Anfartigung einer ingenieurwissenschaftlichen Arbeit. Typische Fachliteratur: Richtlinie für die Gestaltung von wissenschaftlichen Arbeiten an der TU Bergakademie Freiberg in der jeweils geltenden Fassung: DIN 1422, Teil 4; Themenspszifische Fachliteratur wird vom Betreuer benannt. Ehrformen: 51: Unterweisung, Konsulationen / Abschlussarbeit Voraussetzungen für die Teilnahme: 7 Siz Unterweisung, Konsulationen / Abschlussarbeit Prüfungsleistungen in noch nicht abgeschlossenen Modulen - Zulassungsvoraussetzungen des Kolloquiums: Erfolgreicher Abschlussaller übrigen Module des Masterstudienganges Energietechnik ständig Voraussetzungen für die Vergabe von Leistungspunkten: 4 Prüfungsleistungen in noch nicht abgeschlossenen Modulen - Zulassungsvoraussetzungen des Kolloquiums: Erfolgreicher Abschlussaller übrigen Module des Masterstudienganges Energietechnik ständig Voraussetzungen für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: AP*: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [60 min] ** Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung (en): AP*: Kolloquium (Präsent	Daten.	· · · · · · · · · · · · · · · · · · ·
Master Thesis Energy Engineering with Colloquium	Madulpapaa	
Verantwortlich(e): Schwarze, Rüdiger / Prof. DrIng. Prüfer des Studiengangs Dozent(en): Institut für Mechanik und Fluiddynamik Fakultät für Maschinenbau, Verfahrens- und Energietechnik Dauer: 1 Semester 1 Semester 2 Valifikationsziele / Kompetenzen: 4 Aufgabenstellung aus einem Forschungs- oder Anwendungsgebiet der Energietechnik berufstypische Arbeitsmittel und -methoden anzuwenden. Anfertigung einer ingenieurwissenschaftlichen Arbeiten an der TU Bergakender. Inhalte: 7 Anfertigung einer ingenieurwissenschaftlichen Arbeiten an der TU Bergakender. Inhalte: 8 Anfertigung einer ingenieurwissenschaftlichen Arbeiten an der TU Bergakender. Inhalte: 9 Din 1422, Teil 4; 1 Themenspezifische Fachliteratur wird vom Betreuer benannt. 51: Unterweisung, Konsulationen / Abschlussarbeit Voraussetzungen für die Teilnahme: 9 Obligatorisch: 1 Projektarbeit Energietechnik, 2017-06-22 2 Nachweis von 2 Fachexkursionen - Antritt aller Modulprüfungen des 1. und 2. Fachsemesters (durch Ablegen eines Prüfungsversuchs von mindestens einer Prüfungsleistung per Modul) - höchstens drei offene Prüfungsleistungen in noch nicht abgeschlossenen Modulen - Zulassungsvoraussetzungen des Kolloquiums: Erfolgreicher Abschluss aller übrigen Module des Masterstudienganges Energietechnik ständig Voraussetzungen für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) (60 min) **Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Die Vereitet sein. Arbeitsaufwand: Die Zeitaufwand beträgt 900h. Dieser beinhaltet die Auswertung und		
Dozent(en): Institut(e): Instit		
Dozent(en): Institut(e): Institut für Mechanik und Fluiddynamik Fakultät für Maschinenbau. Verfahrens- und Energietechnik Dauer: 1 Semester Qualifikationsziele / Kompetenzen: 1 Die Studierenden sollen die Fähigkeit erwerben, anhand einer konkreten Aufgabenstellung aus einem Forschungs- oder Anwendungsgebiet der Energietechnik berufstypische Arbeitsmittel und -methoden anzuwenden. Inhalte: Anfertigung einer ingenieurwissenschaftlichen Arbeit. Typische Fachliteratur: Richtlinie für die Gestaltung von wissenschaftlichen Arbeiten an der TU Bergakademie Freiberg in der jeweils geltenden Fassung; DIN 1422, Teil 4; Themenspezifische Fachliteratur wird vom Betreuer benannt. Lehrformen: 51: Unterweisung, Konsulationen / Abschlussarbeit Obligatorisch: Triebenspesserische Fachliteratur wird vom Betreuer benannt. S1: Unterweisung, Konsulationen / Abschlussarbeit Obligatorisch: Projektarbeit Energietechnik. 2017-06-22 - Nachweis von 2 Fachexkursionen - Antritt aller Modulprüfungen des 1. und 2. Fachsemesters (durch Ablegen eines Prüfungsversuchs von mindestens einer Prüfungsleistung pro Modul) - höchstens drei offene Prüfungsleistungen in noch nicht abgeschlossenen Modulen - Zulassungsvoraussetzungen des Kolloquiums: Erfolgreicher Abschluss aller übrigen Module des Masterstudienganges Energietechnik ständig Voraussetzungen für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [60 min] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung bestanden bzw. mit mindestens [w: 4] AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Der Zeitaufwand beträgt 900h. Dieser beinhaltet di	verantwortlich(e):	
Institut(e): Institut für Mechanik und Fluiddynamik Fakultät für Maschinenbau, Verfahrens- und Energietechnik Dauer: Dualifikationsziele / Kompetenzen: Die Studierenden sollen die Fähigkeit erwerben, anhand einer konkreten Aufgabenstellung aus einem Forschungs- oder Anwendungsgebiet der Energietechnik berufstypische Arbeitsmittel und -methoden anzuwenden. Inhalte: Anfertigung einer ingenieurwissenschaftlichen Arbeit. Typische Fachliteratur: Richtlinie für die Gestaltung von wissenschaftlichen Arbeiten an der TU Bergakademie Freiberg in der jeweils geltenden Fassung; DIN 1422, Teil 4; Themenspezifische Fachliteratur wird vom Betreuer benannt. S1: Unterweisung, Konsulationen / Abschlussarbeit Obligatorisch: Projektarbeit Energietechnik, 2017-06-22 - Nachweis von 2 Fachexkursionen - Ahrzitt aller Modulprüfungen des 1. und 2. Fachsemesters (durch Ablegen eines Prüfungsversuchs von mindestens einer Prüfungsleistung pro Modul) - höchstens drei offene Prüfungsleistungen in noch nicht abgeschlossenen Modulen - Zulassungsvoraussetzungen des Kolloquiums: Erfolgreicher Abschluss aller übrigen Module des Masterstudienganges Energietechnik Turnus: Ständig Voraussetzungen für die Vergabe von Leistungspunkten: APs: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) APs: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [60 min] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Join Note: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): APs: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 900h. Dieser beinhaltet die Auswertung und		<u>Prufer des Studiengangs</u>
Dauer: Qualifikationsziele / Kompetenzen: Qualifikationsziele / Kompetenzen: Die Studierenden sollen die Fähigkeit erwerben, anhand einer konkreten Aufgabenstellung aus einem Forschungs- oder Anwendungsgebiet der Energietechnik berufstypische Arbeitsmittel und -methoden anzuwenden. Inhalte: Anfertigung einer ingenieurwissenschaftlichen Arbeit. Typische Fachliteratur: Richtlinie für die Gestaltung von wissenschaftlichen Arbeiten an der TU Bergakademie Freiberg in der jeweils geltenden Fassung; DIN 1422, Teil 4; Themenspezifische Fachliteratur wird vom Betreuer benannt. S1: Unterweisung, Konsulationen / Abschlussarbeit Voraussetzungen für die Teilnahme: Voraussetzungen für die Teilnahme: Voraussetzungen für die Wergabe von Bergakademie Freiberg in oher jeweils geltenden Fassung; DiN 1422, Teil 4; Themenspezifische Fachliteratur wird vom Betreuer benannt. S1: Unterweisung, Konsulationen / Abschlussarbeit Volligatorisch: Projektarbeit Energietechnik. 2017-06-22 - Nachweis von 2 Fachexkursionen - Antritt aller Modulprüfungen des 1. und 2. Fachsemesters (durch Ablegen eines Prüfungsversuchs von mindestens einer Prüfungsleistung pro Modul) - höchstens drei offene Prüfungsleistungen in noch nicht abgeschlossenen Modulen - Zulassungsvoraussetzungen des Kolloquiums: Erfolgreicher Abschluss aller übrigen Module des Masterstudienganges Energietechnik Ständig Voraussetzungen für die Vergabe von Leistungspunkten: AP*: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [60 min] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung des Abscheitliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) [w: 4] AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [w: 1] * Bei Modulen mit mehreren Prüfung		
Dauer: Dauer: Die Studierenden sollen die Fähigkeit erwerben, anhand einer konkreten Aufgabenstellung aus einem Forschungs- oder Anwendungsgebiet der Energietechnik berufstypische Arbeitsmittel und -methoden anzuwenden.	Institut(e):	·
Qualifikationsziele / Kompetenzen: Kompetenz		
Aufgabenstellung aus einem Forschungs- oder Anwendungsgebiet der Energietechnik berufstypische Arbeitsmittel und -methoden anzuwenden. Inhalte: Anfertigung einer ingenieurwissenschaftlichen Arbeiten an der TU Bergakademie Freiberg in der jeweils geltenden Fassung; DIN 1422, Teil 4; Themenspezifische Fachliteratur wird vom Betreuer benannt. S1: Unterweisung, Konsulationen / Abschlussarbeit Obligatorisch: Projektarbeit Energietechnik, 2017-06-22 - Nachweis von 2 Fachexkursionen - Antritt aller Modulprüfungen des 1. und 2. Fachsemesters (durch Ablegen eines Prüfungsversuchs von mindestens einer Prüfungsleistung pro Modul) - höchstens drei offene Prüfungsleistungen in noch nicht abgeschlossenen Modulen - Zulassungsvoraussetzungen des Kolloquiums: Erfolgreicher Abschluss aller übrigen Module des Masterstudienganges Energietechnik ständig Voraussetzungen für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: AP*: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [60 min] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. AP*: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) [w: 4] AP*: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) [w: 4] AP*: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) [w: 4] AP*: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) [w: 4] AP*: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) [w: 4] AP*: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) [w: 4] AP*: Master Thesis (schriftlic		
Energietechnik berufstypische Arbeitsmittel und -methoden anzuwenden. Anfertigung einer ingenieurwissenschaftlichen Arbeit. Typische Fachliteratur: Richtlinie für die Gestaltung von wissenschaftlichen Arbeiten an der TU Bergakademie Freiberg in der jeweils geltenden Fassung; DIN 1422, Teil 4; Themenspezifische Fachliteratur wird vom Betreuer benannt. S1: Unterweisung, Konsulationen / Abschlussarbeit Voraussetzungen für Obligatorisch: Projektarbeit Energietechnik. 2017-06-22 - Nachweis von 2 Fachexkursionen - Antritt aller Modulprüfungen des 1. und 2. Fachsemesters (durch Ablegen eines Prüfungsversuchs von mindestens einer Prüfungsleistung pro Modul) - höchstens drei offene Prüfungsleistungen in noch nicht abgeschlossenen Modulen - Zulassungsvoraussetzungen des Kolloquiums: Erfolgreicher Abschluss aller übrigen Module des Masterstudienganges Energietechnik ständig Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: AP*: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [60 min] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Leistungspunkte: 30 Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): AP*: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) [w: 4] AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistungeleistungen bewertet sein. Der Zeitaufwand beträgt 900h. Dieser beinhaltet die Auswertung und		<u> </u>
inhalte: Anfertigung einer ingenieurwissenschaftlichen Arbeit. Typische Fachliteratur: Richtlinie für die Gestaltung von wissenschaftlichen Arbeiten an der TU Bergakademie Freiberg in der jeweils geltenden Fassung; DIN 1422, Teil 4; Themenspezifische Fachliteratur wird vom Betreuer benannt. Lehrformen: S1: Unterweisung, Konsulationen / Abschlussarbeit Obligatorisch: Projektrabeit Energietechnik. 2017-06-22 - Nachweis von 2 Fachexkursionen - Antritt aller Modulprüfungen des 1. und 2. Fachsemesters (durch Ablegen eines Prüfungsversuchs von mindestens einer Prüfungsleistung pro Modul) - höchstens drei offene Prüfungsleistungen in noch nicht abgeschlossenen Modulen - Zulassungsvoraussetzungen des Kolloquiums: Erfolgreicher Abschluss aller übrigen Module des Masterstudienganges Energietechnik ständig Voraussetzungen für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: AP*: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [60 min] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Leistungspunkte: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung (en): AP*: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) [w: 4] AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 900h. Dieser beinhaltet die Auswertung und	Kompetenzen:	
Inhalte:		
Typische Fachliteratur: Richtlinie für die Gestaltung von wissenschaftlichen Arbeiten an der TU Bergakademie Freiberg in der jeweils geltenden Fassung; DIN 1422, Teil 4; Themenspezifische Fachliteratur wird vom Betreuer benannt. S1: Unterweisung, Konsulationen / Abschlussarbeit Obligatorisch: Projektarbeit Energietechnik, 2017-06-22 - Nachweis von 2 Fachexkursionen - Antritt aller Modulprüfungen des 1. und 2. Fachsemesters (durch Ablegen eines Prüfungsversuchs von mindestens einer Prüfungsleistung pro Modul) - höchstens drei offene Prüfungsleistungen in noch nicht abgeschlossenen Modulen - Zulassungsvoraussetzungen des Kolloquiums: Erfolgreicher Abschluss aller übrigen Module des Masterstudienganges Energietechnik Turnus: Ständig Voraussetzungen für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung, Die Modulprüfung umfasst: AP*: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [60 min] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): AP*: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) [w: 4] AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 900h. Dieser beinhaltet die Auswertung und		
Bergakademie Freiberg in der jeweils geltenden Fassung; DIN 1422, Teil 4; Themenspezifische Fachliteratur wird vom Betreuer benannt. S1: Unterweisung, Konsulationen / Abschlussarbeit Voraussetzungen für die Teilnahme: Projektarbeit Energietechnik. 2017-06-22 - Nachweis von 2 Fachexkursionen - Antritt aller Modulprüfungen des 1. und 2. Fachsemesters (durch Ablegen eines Prüfungsversuchs von mindestens einer Prüfungsleistung pro Modul) - höchstens drei offene Prüfungsleistungen in noch nicht abgeschlossenen Modulen - Zulassungsvoraussetzungen des Kolloquiums: Erfolgreicher Abschluss aller übrigen Module des Masterstudienganges Energietechnik ständig Voraussetzungen für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: AP*: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [60 min] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Leistungspunkte: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): AP*: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) [w: 4] AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung (m): Ap*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Der Zeitaufwand beträgt 900h. Dieser beinhaltet die Auswertung und	Inhalte:	
DIN 1422, Teil 4; Themenspezifische Fachliteratur wird vom Betreuer benannt. S1: Unterweisung, Konsulationen / Abschlussarbeit Obligatorisch: Projektarbeit Energietechnik, 2017-06-22 - Nachweis von 2 Fachexkursionen - Antritt aller Modulprüfungen des 1. und 2. Fachsemesters (durch Ablegen eines Prüfungsversuchs von mindestens einer Prüfungsleistung pro Modul) - höchstens drei offene Prüfungsleistungen in noch nicht abgeschlossenen Modulen - Zulassungsvoraussetzungen des Kolloquiums: Erfolgreicher Abschluss aller übrigen Module des Masterstudienganges Energietechnik Turnus: Voraussetzungen für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: AP*: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [60 min] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Leistungspunkte: 30 Note: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung (en): AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 900h. Dieser beinhaltet die Auswertung und	Typische Fachliteratur:	Richtlinie für die Gestaltung von wissenschaftlichen Arbeiten an der TU
Themenspezifische Fachliteratur wird vom Betreuer benannt. S1: Unterweisung, Konsulationen / Abschlussarbeit Voraussetzungen für die Teilnahme: Projektarbeit Energietechnik, 2017-06-22 - Nachweis von 2 Fachexkursionen - Antritt aller Modulprüfungen des 1. und 2. Fachsemesters (durch Ablegen eines Prüfungsversuchs von mindestens einer Prüfungsleistung pro Modul) - höchstens drei offene Prüfungsleistungen in noch nicht abgeschlossenen Modulen - Zulassungsvoraussetzungen des Kolloquiums: Erfolgreicher Abschluss aller übrigen Module des Masterstudienganges Energietechnik ständig Voraussetzungen für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: AP*: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [60 min] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Leistungspunkte: 30 Note: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): AP*: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) [w: 4] AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung (Präsentation und mündliche Verteidigung der Arbeit) [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 900h. Dieser beinhaltet die Auswertung und		Bergakademie Freiberg in der jeweils geltenden Fassung;
S1: Unterweisung, Konsulationen / Abschlussarbeit		DIN 1422, Teil 4;
S1: Unterweisung, Konsulationen / Abschlussarbeit		Themenspezifische Fachliteratur wird vom Betreuer benannt.
die Teilnahme: Projektarbeit Energietechnik, 2017-06-22	Lehrformen:	
die Teilnahme: Projektarbeit Energietechnik, 2017-06-22	Voraussetzungen für	Obligatorisch:
- Nachweis von 2 Fachexkursionen - Antritt aller Modulprüfungen des 1. und 2. Fachsemesters (durch Ablegen eines Prüfungsversuchs von mindestens einer Prüfungsleistung pro Modul) - höchstens drei offene Prüfungsleistungen in noch nicht abgeschlossenen Modulen - Zulassungsvoraussetzungen des Kolloquiums: Erfolgreicher Abschluss aller übrigen Module des Masterstudienganges Energietechnik ständig Voraussetzungen für Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: AP*: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [60 min] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Leistungspunkte: 30 Note: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): AP*: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) [w: 4] AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 900h. Dieser beinhaltet die Auswertung und	die Teilnahme:	
und 2. Fachsemesters (durch Ablegen eines Prüfungsversuchs von mindestens einer Prüfungsleistung pro Modul) - höchstens drei offene Prüfungsleistungen in noch nicht abgeschlossenen Modulen - Zulassungsvoraussetzungen des Kolloquiums: Erfolgreicher Abschluss aller übrigen Module des Masterstudienganges Energietechnik Turnus: Ständig Voraussetzungen für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: AP*: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [60 min] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): AP*: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) [w: 4] AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 900h. Dieser beinhaltet die Auswertung und		· · · · · · · · · · · · · · · · · · ·
mindestens einer Prüfungsleistung pro Modul) - höchstens drei offene Prüfungsleistungen in noch nicht abgeschlossenen Modulen - Zulassungsvoraussetzungen des Kolloquiums: Erfolgreicher Abschluss aller übrigen Module des Masterstudienganges Energietechnik ständig Voraussetzungen für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: AP*: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [60 min] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Leistungspunkte: 30 Note: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): AP*: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) [w: 4] AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 900h. Dieser beinhaltet die Auswertung und		· · ·
Prüfungsleistungen in noch nicht abgeschlossenen Modulen - Zulassungsvoraussetzungen des Kolloquiums: Erfolgreicher Abschluss aller übrigen Module des Masterstudienganges Energietechnik Turnus: Voraussetzungen für die Vergabe von Leistungspunkten: AP*: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [60 min] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Leistungspunkte: 30 Note: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): AP*: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) [w: 4] AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 900h. Dieser beinhaltet die Auswertung und		
Zulassungsvoraussetzungen des Kolloquiums: Erfolgreicher Abschluss aller übrigen Module des Masterstudienganges Energietechnik ständig Voraussetzungen für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: AP*: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [60 min] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Leistungspunkte: Note: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): AP*: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) [w: 4] AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 900h. Dieser beinhaltet die Auswertung und		
aller übrigen Module des Masterstudienganges Energietechnik Turnus: Voraussetzungen für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: AP*: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [60 min] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Leistungspunkte: Note: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): AP*: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) [w: 4] AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 900h. Dieser beinhaltet die Auswertung und		
Turnus: Voraussetzungen für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: AP*: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [60 min] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Leistungspunkte: **Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): AP*: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) [w: 4] AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [w: 1] **Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 900h. Dieser beinhaltet die Auswertung und		
Voraussetzungen für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: AP*: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [60 min] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Leistungspunkte: 30 Note: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): AP*: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) [w: 4] AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 900h. Dieser beinhaltet die Auswertung und	Turnus	
der Modulprüfung. Die Modulprüfung umfasst: AP*: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [60 min] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Leistungspunkte: 30 Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): AP*: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) [w: 4] AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 900h. Dieser beinhaltet die Auswertung und		S .
AP*: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [60 min] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Leistungspunkte: **Boi Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): AP*: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) [w: 4] AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [w: 1] **Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: **Der Zeitaufwand beträgt 900h. Dieser beinhaltet die Auswertung und	9	
Abgabefrist 22 Wochen nach Ausgabe des Themas) AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [60 min] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Leistungspunkte: 30 Note: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): AP*: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) [w: 4] AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 900h. Dieser beinhaltet die Auswertung und	_	_
AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [60 min] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Leistungspunkte: 30 Note: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): AP*: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) [w: 4] AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 900h. Dieser beinhaltet die Auswertung und	Leistarigsparikteri.	
* Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Leistungspunkte: 30 Note: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): AP*: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) [w: 4] AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 900h. Dieser beinhaltet die Auswertung und		
* Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Leistungspunkte: 30 Note: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): AP*: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) [w: 4] AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 900h. Dieser beinhaltet die Auswertung und		
Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Leistungspunkte: 30 Note: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): AP*: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) [w: 4] AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 900h. Dieser beinhaltet die Auswertung und		
Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Leistungspunkte: 30 Note: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): AP*: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) [w: 4] AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 900h. Dieser beinhaltet die Auswertung und		* Doi Madulan mit mahraran Drüfungslaistungan musa diasa
bewertet sein. Leistungspunkte: 30 Note: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): AP*: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) [w: 4] AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 900h. Dieser beinhaltet die Auswertung und		
Leistungspunkte: Note: Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): AP*: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) [w: 4] AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 900h. Dieser beinhaltet die Auswertung und		
Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): AP*: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) [w: 4] AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 900h. Dieser beinhaltet die Auswertung und	l alakum mana umluk a	
Prüfungsleistung(en): AP*: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) [w: 4] AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 900h. Dieser beinhaltet die Auswertung und		
AP*: Master Thesis (schriftliche wissenschaftliche Ausarbeitung, Abgabefrist 22 Wochen nach Ausgabe des Themas) [w: 4] AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 900h. Dieser beinhaltet die Auswertung und	Note:	
Abgabefrist 22 Wochen nach Ausgabe des Themas) [w: 4] AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 900h. Dieser beinhaltet die Auswertung und		
AP*: Kolloquium (Präsentation und mündliche Verteidigung der Arbeit) [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 900h. Dieser beinhaltet die Auswertung und		,
[w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 900h. Dieser beinhaltet die Auswertung und		
* Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 900h. Dieser beinhaltet die Auswertung und		· · · · · · · · · · · · · · · · · · ·
Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 900h. Dieser beinhaltet die Auswertung und		[w: 1]
Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 900h. Dieser beinhaltet die Auswertung und		
bewertet sein. Arbeitsaufwand: Der Zeitaufwand beträgt 900h. Dieser beinhaltet die Auswertung und		<u> </u>
Arbeitsaufwand: Der Zeitaufwand beträgt 900h. Dieser beinhaltet die Auswertung und		Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0)
		No account to the section
Zusammenfassung der Frgehnisse, die Niederschrift der Arheit und die		
Eastime massaring der Ergebinsse, die Niederseining der Arbeit die T	Arbeitsaufwand:	Der Zeitaufwand beträgt 900h. Dieser beinhaltet die Auswertung und
Vorbereitung auf die Verteidigung.	Arbeitsaufwand:	

Daten:	MPSRHEO. MA. Nr. 3105 Stand: 30.05.2017
Daten.	/ Prüfungs-Nr.: 41809
Modulname:	Mehrphasenströmung und Rheologie
(englisch):	Multiphase Flows and Rheology
Verantwortlich(e):	Schwarze, Rüdiger / Prof. DrIng.
Dozent(en):	Chaves Salamanca, Humberto / Dr. rer. nat.
	Schwarze, Rüdiger / Prof. DrIng.
Institut(e):	Institut für Mechanik und Fluiddynamik
Dauer:	1 Semester
Qualifikationsziele /	Studierende kennen die theoretischen Grundlagen zur Behandlung von
Kompetenzen:	Mehrphasenströmungen. Sie können diese insbesondere für die
'	Beschreibung von Partikelströmungen anwenden. Die Studierenden
	können das rheologische Verhalten von Fluiden und Suspensionen
	beurteilen.
Inhalte:	Mehrphasenströmungen:
	Einführung - Mehrphasenströmungen in der Natur und Technik -
	Bewegung der Einzelpartikel (Partikel, Blasen, Tropfen) - Bewegung von
	Partikelschwärmen, statistische Beschreibung - Grundlagen des
	hydraulischen und pneumatischen Transportes - Grundlagen der
	Staubabscheidung
	Rheologie:
	Grundlegende rheologische Eigenschaften der Materie - Klassifizierung
	des Fließverhaltens - Rheologische Modelle (Analogien zur
	Elektrotechnik) - Rheologische Stoffgesetze, Fließgesetze - laminare
	Rohrströmung nichtnewtonscher Fluide
Typische Fachliteratur:	H. Giesekus: Phänomenologische Rheologie, Springer
	C.T. Crowe et al.: Multiphase Flows with Droplets and Particles, CRC
	Press
	R. Tanner: Engineering Rheology, Oxford University Press
Lehrformen:	S1 (SS): Vorlesung (2 SWS)
Voraussetzungen für	Empfohlen:
die Teilnahme:	Technische Thermodynamik II, 2016-07-04
	Technische Thermodynamik I, 2016-07-05
	Höhere Mathematik für Ingenieure 1, 2009-05-27
	Höhere Mathematik für Ingenieure 2, 2009-05-27
	Physik für Ingenieure, 2009-08-18
	Strömungsmechanik I, 2009-05-01
-	Strömungsmechanik II, 2009-05-01
Turnus:	jährlich im Sommersemester
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:
Leistungspunkten:	MP: MP = Einzelprüfung [30 bis 45 min]
Leistungspunkte:	Die Note ergibt eich entenrechend der Cowiehtung (w) aus felgen der (n)
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)
	Prüfungsleistung(en):
Arboitooufwand	MP: MP = Einzelprüfung [w: 1]
Arbeitsaufwand:	Der Zeitaufwand beträgt 90h und setzt sich zusammen aus 30h
	Präsenzzeit und 60h Selbststudium. Letzteres umfasst die Vor- und
	Nachbereitung der Lehrveranstaltung, sowie die Vorbereitung auf die
	mündliche Prüfungsleistung.

Daten:	MODANL. MA. Nr. 3400 /Stand: 19.04.2021
Modulname:	Modellierung von Anlagen und Prozessen zur Energie- und Stoffwandlung
(englisch):	Modeling of Plants and Processes for Energy and Material Conversion
Verantwortlich(e):	Gräbner, Martin / Prof. DrIng.
Dozent(en):	Guhl, Stefan / DrIng.
, ,	Baitalow, Felix / Dr.
Institut(e):	Institut für Energieverfahrenstechnik und Chemieingenieurwesen
Dauer:	1 Semester
Qualifikationsziele /	Ziel ist die Befähigung der Studierenden zur computergestützten
Kompetenzen:	Nachbildung verfahrenstechnischer Prozesse. Nach Erläuterung ausgewählter Prozesse werden den Studierenden grundlegende Kenntnisse bezüglich Analyse, Modellierung und Simulation von technischen Prozessen und die Umsetzung dieser in aktuellen Software-Anwendungen vermittelt. Die vorlesungsbegleitenden Seminare ermöglichen es den Studierenden, die theoretischen Kenntnisse der Prozessmodellierung und -simulation anzuwenden und auszubauen, um selbständig technische Prozesse mit geeigneten Mitteln nachzubilden.
Inhalte: Typische Fachliteratur:	Die Vorlesung Anlagen- und Prozessmodellierung vermittelt anwendungsorientiert die Grundlagen der Prozessanalyse und die Methodik der Modellentwicklung für die Modellierung verfahrenstechnischer Prozesse, insbesondere aus der chemischen und Energieverfahrenstechnik. Gegenüberstellend erfolgt die Einführung in die thermodynamische Gleichgewichtsmodellierung. Die Inhalte der Vorlesung sind abgestimmt auf die Softwaretools FactSage und Aspen Plus. Im Rahmen der Lehrveranstaltung werden darauf aufbauend in Seminarform Softwarelösungen für die Simulation von verfahrens- und energietechnischen Prozessen vorgestellt. An Hand von Anwendungsbeispielen verfahrenstechnischer Grundschaltungen und Anlagenkomponenten werden die Einsatzmöglichkeiten der Software demonstriert sowie Kenntnisse und Fähigkeiten zu deren Anwendung vermittelt und vertieft.
	Edition, Woodhead Publishing, Cambridge, 2008
Lehrformen:	S1 (WS): Vorlesung (1 SWS)
Vorguesch-ung sie für	S1 (WS): Seminar (2 SWS)
Voraussetzungen für die Teilnahme:	Empfohlen: Technische Thermodynamik II, 2009-10-08 Technische Thermodynamik I, 2009-05-01 Agglomeratoren, 2010-07-10 Grundlagen der Kernkraftwerkstechnik, 2011-12-07 Thermochemische Energieträgerwandlung, 2021-04-19 Kenntnisse in MS Office
Turnus:	jährlich im Wintersemester
Voraussetzungen für die Vergabe von Leistungspunkten:	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: KA*: Am Rechner [120 min] KA*: Zur Theorie [60 min] * Bei Modulen mit mehreren Prüfungsleistungen muss diese

	Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein.
Leistungspunkte:	4
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): KA*: Am Rechner [w: 2] KA*: Zur Theorie [w: 1] * Bei Modulen mit mehreren Prüfungsleistungen muss diese
	Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein.
Arbeitsaufwand:	Der Zeitaufwand beträgt 120h und setzt sich zusammen aus 45h Präsenzzeit und 75h Selbststudium. Letzteres umfasst insbesondere die Nachbearbeitung der Seminaraufgaben (Erlernen von Programmbedienung und selbständiges Lösen von Übungsaufgaben), die Vor- und Nachbereitung der LV und die Prüfungsvorbereitungen.

Daten:	MODENST. MA. Nr. 3168Stand: 19.04.2021 5tart: SoSe 2017
	/ Prüfungs-Nr.: 40406
Modulname:	Modellierung von Energie- und Stoffwandlungsprozessen
(englisch):	Modelling of Energy and Material Conversion Processes
Verantwortlich(e):	<u>Gräbner, Martin / Prof. DrIng.</u>
Dozent(en):	Baitalow, Felix / Dr.
Institut(e):	Institut für Energieverfahrenstechnik und Chemieingenieurwesen
Dauer:	1 Semester
Qualifikationsziele /	Die Studierenden können verfahrenstechnische Prozesse
Kompetenzen:	computergestützt nachbilden. Sie besitzen grundlegende Kenntnisse bezüglich Analyse, Modellierung und Simulation von technischen Prozessen und können diese in aktuellen Software-Anwendungen umsetzen.
Inhalte:	Vorlesung Flowsheet-Simulation
	 Grundlagen der Prozessanalyse Modellentwicklung für die Modellierung verfahrenstechnischer Prozesse, insbesondere aus der chemischen und Energieverfahrenstechnik Einführung in das Simulationsprogramme ASPEN Plus Anwendung verschiedener Softwarelösungen
	Seminar Simulationswerkzeuge
	 vertiefende Softwarelösungen (ASPEN Plus, FactSage, Fluent) für die Simulation von verfahrens- und energietechnischen Prozessen Anwendungsbeispiele verfahrenstechnischer Grundschaltungen und Anlagenkomponenten
	Einsatzmöglichkeiten der vorgestellten Software
Typische Fachliteratur:	Interne Lehrmaterialien zu den Lehrveranstaltungen; B. P. Zeigler, H. Praehofer, T. G. Kim: Theory of Modeling and Simulation. 2. Ausgabe, Academic Press, San Diego, 2000
Lehrformen:	S1 (SS): Flowsheet-Simulation / Vorlesung (2 SWS) S1 (SS): Simulationswerkzeuge / Seminar (2 SWS)
Voraussetzungen für die Teilnahme:	Empfohlen: Technische Thermodynamik II, 2016-07-04 Technische Thermodynamik I, 2016-07-05 Grundlagen der Kernkraftwerkstechnik, 2011-12-07 Thermochemische Energieträgerwandlung, 2021-04-19 Kenntnisse in MS Office
Turnus:	jährlich im Sommersemester
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:
Leistungspunkten:	KA: Simulationswerkzeuge [120 min]
	KA: Flowsheet-Simulation [60 min]
Leistungspunkte:	5
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): KA: Simulationswerkzeuge [w: 1] KA: Flowsheet-Simulation [w: 1]
Arbeitsaufwand:	Der Zeitaufwand beträgt 150h und setzt sich zusammen aus 60h Präsenzzeit und 90h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Lehrveranstaltung, die Nachbereitung der

Seminaraufgaben und d	e Prüfungsvorbereitungen.
-----------------------	---------------------------

Daten:	NETZM .MA.Nr. 3124 / Stand: 06.11.2015 \$\frac{1}{2}\$ Start: WiSe 2010
	Prüfungs-Nr.: 41314
Modulname:	Netzregulierung / Netzmanagement
(englisch):	Net controlling / Net management
Verantwortlich(e):	Krause, Hartmut / Prof. DrIng.
Dozent(en):	
Institut(e):	Institut für Wärmetechnik und Thermodynamik
Dauer:	1 Semester
Qualifikationsziele /	Die Vorlesung vermittelt den Studenten die Kenntnisse über den
Kompetenzen:	Ordnungsrahmen der Energieversorgung und die Systemführung von
	Energieversorgungsnetzen.
Inhalte:	Gesetzlicher Ordnungsrahmen für Energieversorger
	Struktur der Unternehmen
	Managementsysteme mit den Modulen:
	Energiefluss
	 Mess-, Abrechnungs- und Bilanzmodelle
	 Energiebeschaffung über Börse
	 Versorgungsinformationssysteme einschließlich GIS
	 Kommunikations- und Nachrichtentechnik
Typische Fachliteratur:	Energiewirtschaftsgesetz und die dazu gehörigen Verordnungen sowie in
	der ersten Vorlesung angegebene
	aktuelle Spezialliteratur
Lehrformen:	S1 (WS): Vorlesung (2 SWS)
Voraussetzungen für	Empfohlen:
die Teilnahme:	BSc-Abschluß Maschienenbau, Verfahrenstechnik oder Umwelt-
	Engineering
Turnus:	jährlich im Wintersemester
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:
Leistungspunkten:	MP/KA (KA bei 16 und mehr Teilnehmern) [MP mindestens 30 min / KA
	90 min]
Leistungspunkte:	3
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)
	Prüfungsleistung(en):
	MP/KA [w: 1]
Arbeitsaufwand:	Der Zeitaufwand beträgt 90h und setzt sich zusammen aus 30h
	Präsenzzeit und 60h Selbststudium. Letzteres umfasst die Vor- und
	Nachbereitung der Lehrveranstaltung und die Prüfungsvorbereitung.

Daten:	NTFD2. MA. Nr. 3118 / Stand: 31.05.2017 🥦 Start: SoSe 2012
	Prüfungs-Nr.: 41810
	Numerische Methoden der Thermofluiddynamik II
	Numerical Methods of Thermo-Fluid Dynamics II
Verantwortlich(e):	Schwarze, Rüdiger / Prof. DrIng.
Dozent(en):	Schwarze, Rüdiger / Prof. DrIng.
	Heinrich, Martin / Dr. Ing.
Institut(e):	Institut für Mechanik und Fluiddynamik
Dauer:	1 Semester
Qualifikationsziele /	Studierende sollen numerische Modelle für thermodynamische und
Kompetenzen:	strömungsmechanische Probleme entwickeln können. Sie sollen
	numerische Simulationen mit gängigen Programmen auf Einzelplatz-
	und Hochleistungsrechnern durchführen und die Güte der
	Simulationsergebnisse bewerten können. Die Studierenden kennen
	einschlägige englischsprachige Fachbegriffe.
Inhalte:	Einführung in numerische Strömungsmechanik
	Rechengitter
	Mathematisches Modell einer Strömung
	Finite-Volumen-Methode
	Modelle für newtonsche Strömungen
	Modelle für turbulente Strömungen
	Modelle für Mehrphasenströmungen
Typische Fachliteratur:	R. Schwarze: CFD-Modellierung, Springer-Verlag
-	H. K. Versteeg und W. Malalasekera: An Introduction to Computational
	Fluid Dynamics, Pearson Verlag
	J. H. Ferziger und M. Peric: Computational Methods for Fluid Dynamics,
	Springer Verlag
Lehrformen:	S1 (SS): Die Vorlesung kann auch in englischer Sprache abgehalten
	werden. Die Bekanntgabe erfolgt zu Semesterbeginn. / Vorlesung (2
	SWS)
	S1 (SS): Die Übung kann auch in englischer Sprache abgehalten werden.
	Die Bekanntgabe erfolgt zu Semesterbeginn. / Übung (1 SWS)
Voraussetzungen für	Empfohlen:
die Teilnahme:	Wärme- und Stoffübertragung, 2009-05-01
	Technische Thermodynamik II, 2016-07-04
	Strömungsmechanik II, 2017-05-30
	Strömungsmechanik I, 2017-05-30
	Technische Thermodynamik I, 2016-07-05
	Numerische Methoden der Thermofluiddynamik I, 2011-04-01
	Kenntnisse einer Programmiersprache
Turnus:	jährlich im Sommersemester
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:
Leistungspunkten:	MP/KA: MP = Einzelprüfung (KA bei 6 und mehr Teilnehmern) [MP
	mindestens 30 min / KA 60 min]
Leistungspunkte:	4
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)
	Prüfungsleistung(en):
	MP/KA: MP = Einzelprüfung [w: 1]
Arbeitsaufwand:	Der Zeitaufwand beträgt 120h und setzt sich zusammen aus 45h
	Präsenzzeit und 75h Selbststudium. Letzteres umfasst die Vor- und
·	Nachbereitung der Lehrveranstaltung sowie die Prüfungsvorbereitung.

Daten:	BAUPLR. BA. Nr. 391 / Stand: 15.07.2016 Start: WiSe 2016
	Prüfungs-Nr.: 61508
Modulname:	Öffentliches Bau- und Planungsrecht
(englisch):	Public Construction and Planning Law
Verantwortlich(e):	Jaeckel, Liv / Prof.
Dozent(en):	<u>Albrecht, Maria</u>
Institut(e):	Professur für Öffentliches Recht
Dauer:	1 Semester
Qualifikationsziele /	Ziel der Veranstaltung ist es, den Studierenden Grundkenntnisse des
Kompetenzen:	öffentlichen Bau- und Planungsrechts zu vermitteln.
Inhalte:	Es werden zunächst die Raumordnungsplanung und die gemeindliche Bauleitplanung vorgestellt. Dann wird auf dieser Grundlage erläutert, welche Voraussetzungen an die Errichtung baulicher Anlagen zu stellen sind und welche Befugnisse die Bauaufsichtsbehörde besitzt, diese Anforderungen durchzusetzen. Im Rahmen der Übung wird vorlesungsbegleitend anhand von praktischen Fällen der Rechtsschutz im Bau- und Planungsrecht erläutert.
Typische Fachliteratur:	Stuttmann, Öffentliches Baurecht, Alpmann Schmidt
	Stollmann, Öffentliches Baurecht, Beck Verlag
Lehrformen:	S1 (WS): Vorlesung (2 SWS)
	S1 (WS): Übung (2 SWS)
Voraussetzungen für	Empfohlen:
die Teilnahme:	Öffentliches Recht, 2016-07-14
Turnus:	ährlich im Wintersemester
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:
Leistungspunkten:	KA [90 min]
Leistungspunkte:	6
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): KA [w: 1]
Arbeitsaufwand:	Der Zeitaufwand beträgt 180h und setzt sich zusammen aus 60h Präsenzzeit und 120h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung von Vorlesung und Übung sowie die Vorbereitung auf die Klausurarbeit.

Daten:	DD = 1/4 1/4 1/4 DO CO / CO 1 10 10 DO CO = - CO 1 1/4 C DO CO = -
	PRENA. MA. Nr. 3068 / Stand: 19.10.2017
NA o alcolos a conse	Prüfungs-Nr.: 41308
Modulname:	Praktikum Energieanlagen
(englisch):	Lab Course Energy Systems
Verantwortlich(e):	Krause, Hartmut / Prof. DrIng.
Dozent(en):	Wesolowski, Saskia / DrIng.
Institut(e):	Institut für Wärmetechnik und Thermodynamik
Dauer:	1 Semester
Qualifikationsziele /	Das Praktikum vermittelt Kenntnisse zum praktischen Umgang mit einer
Kompetenzen:	Vielzahl verschiedener technischer und praktischer Aspekte von
	Energieanlagen. Eine wesentliche Zielsetzung ist dabei neben der
	Vermittlung der Funktionsweise von komplexeren Anlagen auch die
	praktische Erfahrung mit Messtechniken zur Charakterisierung der
	ablaufenden Prozesse, wie sie typischerweise in der Forschung und
	Entwicklung eingesetzt werden.
Inhalte:	regenerative Energieanlagen (Thermische Solaranlagen,
	Photovoltaik Anlagen, Wind- und Wasserkraftanlagen,
	Biogaserzeugung)
	Energiebilanzen
	Industriebrenner
	Industrieöfen
	Kraft-Wärme-Kopplung
	Abgasemissionen / Abgasanalytik
	Schallemissionen
	Wärmedämmungen
	Wärmepumpen
	Brennstoffzellensysteme
	Wasserstofferzeugung durch Reformierung von
	Kohlenwasserstoffen
	Der jeweilige Praktikumsversuch und die dafür eingesetzten
	Messtechniken werden in einer 1-stündigen Vorlesungsveranstaltung
	1
	vorgestellt.
Typische Fachliteratur:	vorgestellt. Skript zu jedem Praktikumsversuch mit weiterführenden
,	vorgestellt. Skript zu jedem Praktikumsversuch mit weiterführenden Literaturangaben für das jeweils behandelte Thema.
Typische Fachliteratur: Lehrformen:	vorgestellt. Skript zu jedem Praktikumsversuch mit weiterführenden Literaturangaben für das jeweils behandelte Thema. S1 (WS): Vorlesung (1 SWS)
Lehrformen:	vorgestellt. Skript zu jedem Praktikumsversuch mit weiterführenden Literaturangaben für das jeweils behandelte Thema. S1 (WS): Vorlesung (1 SWS) S1 (WS): Praktikum (3 SWS)
Lehrformen: Voraussetzungen für	vorgestellt. Skript zu jedem Praktikumsversuch mit weiterführenden Literaturangaben für das jeweils behandelte Thema. S1 (WS): Vorlesung (1 SWS) S1 (WS): Praktikum (3 SWS) Empfohlen:
Lehrformen:	vorgestellt. Skript zu jedem Praktikumsversuch mit weiterführenden Literaturangaben für das jeweils behandelte Thema. S1 (WS): Vorlesung (1 SWS) S1 (WS): Praktikum (3 SWS) Empfohlen: Wasserstoff- und Brennstoffzellentechnologien, 2011-07-27
Lehrformen: Voraussetzungen für	vorgestellt. Skript zu jedem Praktikumsversuch mit weiterführenden Literaturangaben für das jeweils behandelte Thema. S1 (WS): Vorlesung (1 SWS) S1 (WS): Praktikum (3 SWS) Empfohlen: Wasserstoff- und Brennstoffzellentechnologien, 2011-07-27 Wind- und Wasserkraftanlagen/ Windenergienutzung, 2011-07-27
Lehrformen: Voraussetzungen für	vorgestellt. Skript zu jedem Praktikumsversuch mit weiterführenden Literaturangaben für das jeweils behandelte Thema. S1 (WS): Vorlesung (1 SWS) S1 (WS): Praktikum (3 SWS) Empfohlen: Wasserstoff- und Brennstoffzellentechnologien, 2011-07-27 Wind- und Wasserkraftanlagen/ Windenergienutzung, 2011-07-27 Dezentrale Kraft-Wärme-Kopplung, 2011-03-01
Lehrformen: Voraussetzungen für	vorgestellt. Skript zu jedem Praktikumsversuch mit weiterführenden Literaturangaben für das jeweils behandelte Thema. S1 (WS): Vorlesung (1 SWS) S1 (WS): Praktikum (3 SWS) Empfohlen: Wasserstoff- und Brennstoffzellentechnologien, 2011-07-27 Wind- und Wasserkraftanlagen/ Windenergienutzung, 2011-07-27 Dezentrale Kraft-Wärme-Kopplung, 2011-03-01 Energiewirtschaft, 2011-07-27
Lehrformen: Voraussetzungen für	vorgestellt. Skript zu jedem Praktikumsversuch mit weiterführenden Literaturangaben für das jeweils behandelte Thema. S1 (WS): Vorlesung (1 SWS) S1 (WS): Praktikum (3 SWS) Empfohlen: Wasserstoff- und Brennstoffzellentechnologien, 2011-07-27 Wind- und Wasserkraftanlagen/ Windenergienutzung, 2011-07-27 Dezentrale Kraft-Wärme-Kopplung, 2011-03-01 Energiewirtschaft, 2011-07-27 Messtechnik in der Thermofluiddynamik, 2009-05-01
Lehrformen: Voraussetzungen für	vorgestellt. Skript zu jedem Praktikumsversuch mit weiterführenden Literaturangaben für das jeweils behandelte Thema. S1 (WS): Vorlesung (1 SWS) S1 (WS): Praktikum (3 SWS) Empfohlen: Wasserstoff- und Brennstoffzellentechnologien, 2011-07-27 Wind- und Wasserkraftanlagen/ Windenergienutzung, 2011-07-27 Dezentrale Kraft-Wärme-Kopplung, 2011-03-01 Energiewirtschaft, 2011-07-27 Messtechnik in der Thermofluiddynamik, 2009-05-01 Bachelor in Maschinenbau, Verfahrenstechnik, Umwelt-Engineering oder
Lehrformen: Voraussetzungen für	vorgestellt. Skript zu jedem Praktikumsversuch mit weiterführenden Literaturangaben für das jeweils behandelte Thema. S1 (WS): Vorlesung (1 SWS) S1 (WS): Praktikum (3 SWS) Empfohlen: Wasserstoff- und Brennstoffzellentechnologien, 2011-07-27 Wind- und Wasserkraftanlagen/ Windenergienutzung, 2011-07-27 Dezentrale Kraft-Wärme-Kopplung, 2011-03-01 Energiewirtschaft, 2011-07-27 Messtechnik in der Thermofluiddynamik, 2009-05-01 Bachelor in Maschinenbau, Verfahrenstechnik, Umwelt-Engineering oder vergleichbarem Studiengang
Lehrformen: Voraussetzungen für die Teilnahme: Turnus:	vorgestellt. Skript zu jedem Praktikumsversuch mit weiterführenden Literaturangaben für das jeweils behandelte Thema. S1 (WS): Vorlesung (1 SWS) S1 (WS): Praktikum (3 SWS) Empfohlen: Wasserstoff- und Brennstoffzellentechnologien, 2011-07-27 Wind- und Wasserkraftanlagen/ Windenergienutzung, 2011-07-27 Dezentrale Kraft-Wärme-Kopplung, 2011-03-01 Energiewirtschaft, 2011-07-27 Messtechnik in der Thermofluiddynamik, 2009-05-01 Bachelor in Maschinenbau, Verfahrenstechnik, Umwelt-Engineering oder vergleichbarem Studiengang jährlich im Wintersemester
Lehrformen: Voraussetzungen für die Teilnahme: Turnus: Voraussetzungen für	vorgestellt. Skript zu jedem Praktikumsversuch mit weiterführenden Literaturangaben für das jeweils behandelte Thema. S1 (WS): Vorlesung (1 SWS) S1 (WS): Praktikum (3 SWS) Empfohlen: Wasserstoff- und Brennstoffzellentechnologien, 2011-07-27 Wind- und Wasserkraftanlagen/ Windenergienutzung, 2011-07-27 Dezentrale Kraft-Wärme-Kopplung, 2011-03-01 Energiewirtschaft, 2011-07-27 Messtechnik in der Thermofluiddynamik, 2009-05-01 Bachelor in Maschinenbau, Verfahrenstechnik, Umwelt-Engineering oder vergleichbarem Studiengang jährlich im Wintersemester Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
Lehrformen: Voraussetzungen für die Teilnahme: Turnus: Voraussetzungen für die Vergabe von	vorgestellt. Skript zu jedem Praktikumsversuch mit weiterführenden Literaturangaben für das jeweils behandelte Thema. S1 (WS): Vorlesung (1 SWS) S1 (WS): Praktikum (3 SWS) Empfohlen: Wasserstoff- und Brennstoffzellentechnologien, 2011-07-27 Wind- und Wasserkraftanlagen/ Windenergienutzung, 2011-07-27 Dezentrale Kraft-Wärme-Kopplung, 2011-03-01 Energiewirtschaft, 2011-07-27 Messtechnik in der Thermofluiddynamik, 2009-05-01 Bachelor in Maschinenbau, Verfahrenstechnik, Umwelt-Engineering oder vergleichbarem Studiengang jährlich im Wintersemester Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst:
Lehrformen: Voraussetzungen für die Teilnahme: Turnus: Voraussetzungen für	vorgestellt. Skript zu jedem Praktikumsversuch mit weiterführenden Literaturangaben für das jeweils behandelte Thema. S1 (WS): Vorlesung (1 SWS) S1 (WS): Praktikum (3 SWS) Empfohlen: Wasserstoff- und Brennstoffzellentechnologien, 2011-07-27 Wind- und Wasserkraftanlagen/ Windenergienutzung, 2011-07-27 Dezentrale Kraft-Wärme-Kopplung, 2011-03-01 Energiewirtschaft, 2011-07-27 Messtechnik in der Thermofluiddynamik, 2009-05-01 Bachelor in Maschinenbau, Verfahrenstechnik, Umwelt-Engineering oder vergleichbarem Studiengang jährlich im Wintersemester Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: PVL: Abschluss der Praktika
Lehrformen: Voraussetzungen für die Teilnahme: Turnus: Voraussetzungen für die Vergabe von	vorgestellt. Skript zu jedem Praktikumsversuch mit weiterführenden Literaturangaben für das jeweils behandelte Thema. S1 (WS): Vorlesung (1 SWS) S1 (WS): Praktikum (3 SWS) Empfohlen: Wasserstoff- und Brennstoffzellentechnologien, 2011-07-27 Wind- und Wasserkraftanlagen/ Windenergienutzung, 2011-07-27 Dezentrale Kraft-Wärme-Kopplung, 2011-03-01 Energiewirtschaft, 2011-07-27 Messtechnik in der Thermofluiddynamik, 2009-05-01 Bachelor in Maschinenbau, Verfahrenstechnik, Umwelt-Engineering oder vergleichbarem Studiengang jährlich im Wintersemester Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst:
Lehrformen: Voraussetzungen für die Teilnahme: Turnus: Voraussetzungen für die Vergabe von	vorgestellt. Skript zu jedem Praktikumsversuch mit weiterführenden Literaturangaben für das jeweils behandelte Thema. S1 (WS): Vorlesung (1 SWS) S1 (WS): Praktikum (3 SWS) Empfohlen: Wasserstoff- und Brennstoffzellentechnologien, 2011-07-27 Wind- und Wasserkraftanlagen/ Windenergienutzung, 2011-07-27 Dezentrale Kraft-Wärme-Kopplung, 2011-03-01 Energiewirtschaft, 2011-07-27 Messtechnik in der Thermofluiddynamik, 2009-05-01 Bachelor in Maschinenbau, Verfahrenstechnik, Umwelt-Engineering oder vergleichbarem Studiengang jährlich im Wintersemester Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: PVL: Abschluss der Praktika
Lehrformen: Voraussetzungen für die Teilnahme: Turnus: Voraussetzungen für die Vergabe von	vorgestellt. Skript zu jedem Praktikumsversuch mit weiterführenden Literaturangaben für das jeweils behandelte Thema. S1 (WS): Vorlesung (1 SWS) S1 (WS): Praktikum (3 SWS) Empfohlen: Wasserstoff- und Brennstoffzellentechnologien, 2011-07-27 Wind- und Wasserkraftanlagen/ Windenergienutzung, 2011-07-27 Dezentrale Kraft-Wärme-Kopplung, 2011-03-01 Energiewirtschaft, 2011-07-27 Messtechnik in der Thermofluiddynamik, 2009-05-01 Bachelor in Maschinenbau, Verfahrenstechnik, Umwelt-Engineering oder vergleichbarem Studiengang jährlich im Wintersemester Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: PVL: Abschluss der Praktika MP/KA (KA bei 11 und mehr Teilnehmern) [MP mindestens 30 min / KA
Lehrformen: Voraussetzungen für die Teilnahme: Turnus: Voraussetzungen für die Vergabe von	vorgestellt. Skript zu jedem Praktikumsversuch mit weiterführenden Literaturangaben für das jeweils behandelte Thema. S1 (WS): Vorlesung (1 SWS) S1 (WS): Praktikum (3 SWS) Empfohlen: Wasserstoff- und Brennstoffzellentechnologien, 2011-07-27 Wind- und Wasserkraftanlagen/ Windenergienutzung, 2011-07-27 Dezentrale Kraft-Wärme-Kopplung, 2011-03-01 Energiewirtschaft, 2011-07-27 Messtechnik in der Thermofluiddynamik, 2009-05-01 Bachelor in Maschinenbau, Verfahrenstechnik, Umwelt-Engineering oder vergleichbarem Studiengang jährlich im Wintersemester Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: PVL: Abschluss der Praktika MP/KA (KA bei 11 und mehr Teilnehmern) [MP mindestens 30 min / KA 90 min]
Lehrformen: Voraussetzungen für die Teilnahme: Turnus: Voraussetzungen für die Vergabe von Leistungspunkten:	vorgestellt. Skript zu jedem Praktikumsversuch mit weiterführenden Literaturangaben für das jeweils behandelte Thema. S1 (WS): Vorlesung (1 SWS) S1 (WS): Praktikum (3 SWS) Empfohlen: Wasserstoff- und Brennstoffzellentechnologien, 2011-07-27 Wind- und Wasserkraftanlagen/ Windenergienutzung, 2011-07-27 Dezentrale Kraft-Wärme-Kopplung, 2011-03-01 Energiewirtschaft, 2011-07-27 Messtechnik in der Thermofluiddynamik, 2009-05-01 Bachelor in Maschinenbau, Verfahrenstechnik, Umwelt-Engineering oder vergleichbarem Studiengang jährlich im Wintersemester Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: PVL: Abschluss der Praktika MP/KA (KA bei 11 und mehr Teilnehmern) [MP mindestens 30 min / KA 90 min] PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden.

	MP/KA [w: 1]
Arbeitsaufwand:	Der Zeitaufwand beträgt 120h und setzt sich zusammen aus 60h Präsenzzeit und 60h Selbststudium. Letzteres umfasst die Vor- und Nachbereitung der Praktikaversuche und die Vorbereitung auf die mündliche Prüfungsleistung.

Data:	PROMOD. MA. Nr. 3483 Version: 06.04.2017 5 Start Year: WiSe 2017
Data.	/ Examination number: -
Module Name:	Process Modelling (Prozessmodellierung)
(English):	Process Modelling (Prozessinodellierding)
Responsible:	Krause, Hartmut / Prof. DrIng.
Lecturer(s):	Ray, Subhashis / Prof. Dr.
Institute(s):	Institute of Thermal Engineering
Duration:	1 Semester(s)
Competencies:	This course aims to impart the relevant knowledge for carrying out
Competencies.	computer-aided process modelling and optimization. Major objective of
	the course is to understand complex processes, such as those occurring
	in Thermo-Fluid Systems, by preparing flowcharts for modelling
	individual sub-processes and to apply balance laws for the overall
	processes by taking into account all the implicit interactions. Further
	expertise will be gained in terms of simulation of steady state and
	dynamic behaviour of systems, use of software and optimization of
	system parameters.
Contents:	Mass, momentum and energy balance in integral form, Equation fitting,
Contents.	Property evaluation, Modelling of individual components, Simple
	modelling using Finite Volume Method, System simulation, Steady state
	and dynamic behaviour of systems, Entropy generation analysis,
	Optimization: Lagrange multipliers, search methods, dynamic
	programming, geometric programming, linear programming, Use of
Litoraturo	software, Dealing with comprehensive design problems, etc.
Literature:	1) W.F. Stoecker, Design of Thermal Systems, McGraw Hill. 2) W.D. Seider, J.D. Seader, D.R. Lewin, Product and Process Design Principles:
	Synthesis, Analysis and Evaluation, Wiley. 3) Wiley-VCH (Editor):
	Ullmann's Modelling and Simulation, Wiley. 4) A. Bejan, G. Tsatsaronis,
	M. Moran, Thermal Design and Optimization, Wiley. 5) Y. Jaluria, Design
	and Optimization of Thermal Systems, CRC Press. 6) R.F. Boehm
	(Editor): Developments in the Design of Thermal Systems, Cambridge
	University Press.
Types of Teaching:	S1 (WS): Lectures (2 SWS)
Types of Teaching.	S1 (WS): Exercises (1 SWS)
Pre-requisites:	Recommendations:
rie-requisites.	Wärme- und Stoffübertragung, 2016-07-05
	Technische Thermodynamik I, 2016-07-05
	Strömungsmechanik I, 2017-02-07
Frequency:	yearly in the winter semester
	For the award of credit points it is necessary to pass the module exam.
Points:	The module exam contains:
i dirits.	KA* [90 min]
	AP*: Assignments
	Ar . Assignments
	* In modules requiring more than one exam, this exam has to be passed
	or completed with at least "ausreichend" (4,0), respectively.
	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
	der Modulprüfung. Die Modulprüfung umfasst:
	KA* [90 min]
	AP*: Beleg
	Ar. beleg
	 Bei Modulen mit mehreren Prüfungsleistungen muss diese
	1
	Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein.
Crodit Points:	реwertet Sein.
Credit Points:	

Grade:	The Grade is generated from the examination result(s) with the following weights (w): KA* [w: 7] AP*: Assignments [w: 3]
	* In modules requiring more than one exam, this exam has to be passed or completed with at least "ausreichend" (4,0), respectively.
Workload:	The workload is 120h. The total time budget for this module is 120 hours – 45 hours in class and 75 hours on self-study, including preparation for examination.

Datas	DDQ MA N. 2466 (D." Kland 22 06 2017 F. Kland 6.66 2017
Daten:	PRO. MA. Nr. 3466 / Prü-Stand: 22.06.2017
	fungs-Nr.: 49922
Modulname:	Projektarbeit Energietechnik
(englisch):	Project Paper Energy Engineering
Verantwortlich(e):	Schwarze, Rüdiger / Prof. DrIng.
	Prüfer des Studiengangs
Dozent(en):	
Institut(e):	Institut für Mechanik und Fluiddynamik
	Fakultät für Maschinenbau, Verfahrens- und Energietechnik
Dauer:	6 Monat(e)
Qualifikationsziele /	Die Studierenden sollen ihre Fähigkeit zur Teamarbeit entwickeln und
Kompetenzen:	nachweisen. Insbesondere sollen die bearbeiterbezogene Strukturierung
•	einer Aufgabe, die Zeitplanung, die Koordinierung der aufgeteilten
	Aufgabenbearbeitung, der Ergebniszusammenführung und -darstellung
	sowie der Präsentation geübt werden.
Inhalte:	Die Projektarbeit umfasst die Bearbeitung einer Aufgabe aus der
innaice.	Forschung, Entwicklung und Problemanalyse in enger Kooperation mit
	den beteiligten Institutionen. Sie wird studienbegleitend in einem
	kleinen Team von vorzugsweise 3 bis 5 Studenten bearbeitet. Sie soll
	einen Bezug zum gewählten Vertiefungsfach und nach Möglichkeit
	interdisziplinären Charakter haben.
	Es ist gestattet, die Projektarbeit gemeinsam mit Studierenden von
	Diplom- oder Master-Studiengängen (z. B. MB, UWE) zu bearbeiten,
	sofern für diese ebenfalls eine Projektarbeit mit vergleichbaren
	Qualifikationszielen vorgesehen ist.
	Es ist eine gemeinsame schriftliche Arbeit anzufertigen, in welcher die
	Anteile der einzelnen Bearbeiter kenntlich gemacht sind.
Typische Fachliteratur:	Richtlinie für die Gestaltung von wissenschaftlichen Arbeiten an der TU
	Bergakademie Freiberg in der jeweiligen Fassung.
	Abhängig vom gewählten Thema. Hinweise gibt der verantwortliche
	Prüfer bzw. Betreuer.
Lehrformen:	S1: Unterweisung; Konsultationen, Arbeitstreffen, Präsentation in
	vorgegebener Zeit / Projektarbeit
Voraussetzungen für	Obligatorisch:
die Teilnahme:	Bachelorabschluss
Turnus:	ständig
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:
Leistungspunkten:	AP*: Projektarbeit (gemeinsame schriftliche wissenschaftliche
Leistungspunkten.	Ausarbeitung, Anteile der einzelnen Bearbeiter sind kenntlich zu
	machen, Abgabefrist 22 Wochen nach Ausgabe des Themas)
	AP*: Präsentation
	* Bei Modulen mit mehreren Prüfungsleistungen muss diese
	Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0)
	bewertet sein.
Leistungspunkte:	11
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)
	Prüfungsleistung(en):
	AP*: Projektarbeit (gemeinsame schriftliche wissenschaftliche
	Ausarbeitung, Anteile der einzelnen Bearbeiter sind kenntlich zu
	machen, Abgabefrist 22 Wochen nach Ausgabe des Themas) [w: 2]
	AP*: Präsentation [w: 1]
	* Bei Modulen mit mehreren Prüfungsleistungen muss diese
I	1

	Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein.
Arbeitsaufwand:	Der Zeitaufwand beträgt 330h. Dies gilt für jeden an der Projektarbeit beteiligten Studenten und setzt sich zusammen aus 270 h für die Projektkoordination und das Erarbeiten der Inhalte sowie 60 h für die formgerechte Anfertigung der Arbeit und der Präsentationsmedien.

Daten:	PROWUET. MA. Nr. 3066Stand: 05.07.2016 Start: SoSe 2014
	/ Prüfungs-Nr.: 41208
Modulname:	Projektierung von Wärmeübertragern
(englisch):	Heat Exchanger Design
Verantwortlich(e):	Fieback, Tobias / Prof. Dr. Ing.
Dozent(en):	Fieback, Tobias / Prof. Dr. Ing.
Institut(e):	Institut für Wärmetechnik und Thermodynamik
Dauer:	1 Semester
Qualifikationsziele /	Die Studierenden sollen in der Lage sein für eine gegebene
Kompetenzen:	Problemstellung einen geeigneten Wärmeübertrager auszuwählen, zu
•	berechnen und die Grundlagen für die konstruktive Gestaltung
	bereitzustellen.
Inhalte:	Es werden die einzelnen Schritte der Projektierung von
	Wärmeübertragern behandelt. Dabei wird ausführlich sowohl auf
	Rekuperatoren (Rührkessel, Doppelrohr, Gleich-, Gegen-, Kreuzstrom,
	Rohrbündel-, Platten-, Spiral-Wärmeübertrager) mit und ohne
	Phasenwechsel eingegangen, als auch auf Regeneratoren aus den
	Bereichen Lüftungstechnik, Kraftwerkstechnik (Ljungström) und
	Hochofentechnik (Winderhitzer).
	Teilaspekte sind dabei: Berechnung von Temperaturen und treibenden
	Temperaturdifferenzen (dimensionslose Kennzahlen, Diagramme,
	Näherungsbeziehungen); Gang der Berechnung (Neuentwurf bzw.
	Nachrechnung eines vorhandenen Wärmeübertragers); Numerische
	Verfahren; Kopplung von Wärmeübertragern, Wärmeübertrager-
	Netzwerke; Wärmeverluste, Verschmutzung (Ursachen, und Arten,
	Einfluss, Maßnahmen); Druckabfall.
Typische Fachliteratur:	VDI-Wärmeatlas, Springer-Verlag
	R.K. Shah, D.P. Sekulic: Fundamentals of Heat Exchanger Design, John
	Wiley & Sons
Lehrformen:	S1 (SS): Vorlesung (2 SWS)
	S1 (SS): Übung (1 SWS)
Voraussetzungen für	Empfohlen:
die Teilnahme:	Wärme- und Stoffübertragung, 2009-05-01
Turnus:	jährlich im Sommersemester
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:
Leistungspunkten:	MP/KA (KA bei 16 und mehr Teilnehmern) [MP mindestens 30 min / KA
	90 min]
Leistungspunkte:	4
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)
	Prüfungsleistung(en):
	MP/KA [w: 1]
Arbeitsaufwand:	Der Zeitaufwand beträgt 120h und setzt sich zusammen aus 45h
	Präsenzzeit und 75h Selbststudium. Letzteres umfasst die Vor- und
	Nachbereitung der Lehrveranstaltung und die Prüfungsvorbereitung.

Daten:	REGENRG. BA. Nr. 619 / Stand: 19.04.2021
	Prüfungs-Nr.: 44301
Modulname:	Regenerierbare Energieträger
(englisch):	Renewable Energies
Verantwortlich(e):	Gräbner, Martin / Prof. DrIng.
Dozent(en):	Müller, Armin / Prof. Dr.
, ,	Gräbner, Martin / Prof. DrIng.
Institut(e):	Institut für Technische Chemie
	Institut für Energieverfahrenstechnik und Chemieingenieurwesen
Dauer:	1 Semester
Qualifikationsziele /	Studierende sollen nach Absolvierung des Modules alle industriellen
Kompetenzen:	Technologien zur regenerativen Strom- und Wärmeerzeugung
	kennengelernt und verstanden haben, sodass sie auf fachspezifische
	Fragen kompetent und argumentativ antworten können. Dazu gehört die
	Einordnung/Rolle der Erneuerbaren in die heutige und zukünftige
	Energieversorgung sowie das Verständnis über Potenziale und
	Schwächen. Weiterhin wird auf die Wirtschaftlichkeit der Techno-logien
	eingegangen. Praktisches Wissen wird in drei Praktika und
	verschiedenen Exkursionen vermittelt.
Inhalte:	Windkraft, Solarthermie, Photovoltaik, Geothermie, Wasserkraft,
	Biomasse, Speichertechnologien, gesetzliche Rahmenbedingungen
Typische Fachliteratur:	Internes Lehrmaterial zur Lehrveranstaltung.
	Kaltschmitt, M: Erneuerbare Energien, Springer Verlag 2006
Lehrformen:	S1 (WS): Vorlesung (2 SWS)
	S1 (WS): Praktikum (1 SWS)
	S1 (WS): Exkursion (1 d)
Voraussetzungen für	Empfohlen:
die Teilnahme:	Kenntnisse in naturwissenschaftlichen Grundlagenfächern und
	Energiewirtschaft
Turnus:	jährlich im Wintersemester
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:
Leistungspunkten:	KA [90 min]
	PVL: Teilnahme an mindestens einer Exkursion und die positive
	Bewertung der Praktika
	PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden.
Leistungspunkte:	Die Nete engibt eich entengesband der Cowiehtung (w) eine felgen der (v)
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)
	Prüfungsleistung(en):
Arboitsoufwand	KA [w: 1] Der Zeitaufwand beträgt 90h und setzt sich zusammen aus 53h
Arbeitsaufwand:	Präsenzzeit und 37h Selbststudium. Letzteres umfasst die Vor- und
	Nachbereitung der Lehrveranstaltungen und die
	Prüfungsvorbereitungen.

TGINDZA. MA. Nr. 406 / Stand: 28.05.2009 🖫 Start: WiSe 2009
Prüfungs-Nr.: 60120
Technikgeschichte des Industriezeitalters
History of Technology of Industrial Age
Albrecht, Helmuth / Prof. Dr.
Pohl, Norman / Dr.
<u>Ladwig, Roland / Dr.</u>
Institut für Industriearchäologie, Wissenschafts- und Technikgeschichte
1 Semester
Die Studierenden sollen einen Überblick über die Entwicklung der
Technik im Industriezeitalter erwerben und diesen in den Kontext der
allgemeinen gesellschaftlichen Entwicklung stellen können.
Das Modul vermittelt einen Gesamtüberblick zur historischen
Entwicklung der Technik vom Beginn der Industrialisierung bis zur
Gegenwart im Kontext der allgemeinen gesellschaftlichen Entwicklung.
Stephen F. Mason: Geschichte der Naturwissenschaft in der Entwicklung
ihrer Denkweisen. Stuttgart 1961;
Wolfgang König (Hg.): Propyläen Technikgeschichte. 5 Bde., Berlin
1990-1992.
S1 (WS): Vorlesung (2 SWS)
Empfohlen:
Kenntnisse der gymnasialen Oberstufe
jährlich im Wintersemester
Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
der Modulprüfung. Die Modulprüfung umfasst:
KA [90 min]
3
Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)
Prüfungsleistung(en):
KA [w: 1]
Der Zeitaufwand beträgt 90h und setzt sich zusammen aus 30h
Präsenzzeit und 60h Selbststudium. Letzteres umfasst Vor- und
Nachbereitung der Lehrveranstaltungen, Prüfungsvorbereitung sowie
Literaturstudium.

Daten:	TCEWA. MA. Nr. 3482 / Stand: 19.04.2021 📜 Start: SoSe 2016
	Prüfungs-Nr.: 40414
Modulname:	Thermochemische Energieträgerwandlung
(englisch):	Thermochemical Conversion of Fuels
Verantwortlich(e):	<u>Gräbner, Martin / Prof. DrIng.</u>
Dozent(en):	Krzack, Steffen / DrIng.
Institut(e):	Institut für Energieverfahrenstechnik und Chemieingenieurwesen
Dauer:	1 Semester
Qualifikationsziele /	Ziel ist die Vermittlung von grundlegenden Kenntnissen zu
Kompetenzen:	thermochemischen Konversionsprozessen von fossilen und
	nachwachsenden Energieträgern und zu deren technologischen
	Anwendungen zur Erzeugung u.a. von Brenn- und Synthesegas,
	Wasserstoff, Koks oder carbochemischen Rohstoffen.
Inhalte:	In der Vorlesung werden – ausgehend vom strukturellen Aufbau und den
	veredlungstechnischen Eigenschaften von gasförmigen, flüssigen und
	festen Energieträgern – die thermochemischen Konversionsprozesse
	hinsichtlich stofflicher, thermodynamischer und kinetischer Grundlagen
	behandelt. Der Schwerpunkt liegt auf Prozessen der Pyrolyse und
	Vergasung, ergänzt durch die Verflüssigung. Hauptanwendungen dieser
	Prozesse werden verfahrenstechnisch erläutert und technologisch
	eingeordnet. Dazu zählen die Schwelung bzw. Verkokung von Biomasse,
	Braun- und Steinkohle, die Vergasung von festen Energieträgern im
	Festbett, in der Wirbelschicht und im Flugstrom, die Spaltung von
	gasförmigen und flüssigen Kohlenwasserstoffen, die Kohlehydrierung
	sowie die Herstellung von Kohlenstoffadsorbentien. Im Praktikum
	werden Laborversuche zu o.g. Schwerpunkten durchgeführt.
Typische Fachliteratur:	Interne Lehrmaterialien zu den Lehrveranstaltungen;
	Higman/van der Burgt: Gasification. Elsevier Science, 2003
Lehrformen:	S1 (SS): Thermochemische Energieträgerwandlung / Vorlesung (3 SWS)
	S1 (SS): Energieträgerwandlung / Praktikum (1 SWS)
Voraussetzungen für	Empfohlen:
die Teilnahme:	Technische Thermodynamik II, 2009-10-08
	Technische Thermodynamik I, 2009-05-01
	Einführung in die Prinzipien der Chemie, 2009-08-18
	Grundlagen der Physikalischen Chemie für Ingenieure, 2009-08-11
	Reaktionstechnik, 2009-05-01
Turnus:	iährlich im Sommersemester
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:
Leistungspunkten:	MP/KA (KA bei 20 und mehr Teilnehmern) [MP mindestens 30 min / KA
	90 min]
	AP: Benotetes Praktikum
	Die Teilnehmerzahl wird in der zweiten Woche der Vorlesungszeit
	anhand der Anwesenden in den Lehrveranstaltungen festgestellt und
	den Studierenden wird unverzüglich mitgeteilt, wenn die mündliche
	Prüfungsleistung durch eine Klausurarbeit ersetzt wird.
Leistungspunkte:	5
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)
	Prüfungsleistung(en):
	MP/KA [w: 4]
	AP: Benotetes Praktikum [w: 1]
Arbeitsaufwand:	Der Zeitaufwand beträgt 150h und setzt sich zusammen aus 60h
, a belesaurwana.	Präsenzzeit und 90h Selbststudium. Letzteres umfasst die Vor- und
	Nachbereitung der Lehrveranstaltung und der Praktika sowie die
	Prüfungsvorbereitungen.
	ı rarangsvorberettangen.

Data:	TPUC. MA. Nr. 3359 / Version: 07.04.2017 📜 Start Year: SoSe 2017
	Examination number: -
Module Name:	Transport Phenomena Using CFD
(English):	Numerische Beschreibung von Transportvorgängen
Responsible:	Krause, Hartmut / Prof. DrIng.
Lecturer(s):	Ray, Subhashis / Prof. Dr.
Institute(s):	Institute of Thermal Engineering
Duration:	1 Semester(s)
Competencies:	By the end of the module the student should be able to
Competences:	by the end of the module the stadent should be able tom
	Simplifying a complex problem, if required
	Formulate the equations governing the problems
	Write special purpose codes for solving specific problems in the
	field of thermal and fluids engineering
	Impose appropriate boundary conditions
	Understand the issues of CFD while solving problem with codes
Contents:	Governing Conservation Laws and Associated Discussions: Mass
contents.	balance, momentum balance, first and second laws of thermodynamics;
	Lagrangian and Eulerian coordinates; Reynolds transport theorem;
	Integral and differential forms of continuity equation, momentum
	equation, mechanical energy balance equation, energy equation;
	importance of second law of thermodynamics, Simple Numerical
	Issues: One-dimensional (1D) fin problems – analytical and numerical
	solutions; Introduction to Finite Volume Method (FVM); Solution of tri-
	diagonal systems; Transient 1D problems; Conduction examples – semi-
	infinite medium, 2D heat conduction; Special cases of boundary layers;
	Forced convection through ducts; Flows through periodic structures
	(periodically fully-developed flows); Computational Fluid Dynamics:
	Formulation of multi-dimensional problems – stream-function-vorticity
	formulation; Primitive variable approach – introduction to staggered
	grid, SIMPLE, SIMPLER and SIMPLEC algorithms; Discretisation of
	convection and diffusion terms; Dealing with transient terms; Artificial or
Litoratura	false diffusion; Introduction to non-staggered grid, etc.
Literature:	1) R.E. Sonntag, C. Borgnakke, G.J. Van Wylen, Fundamentals of
	Thermodynamics, John Wiley & Sons, 2) R.B. Bird, W.E. Stewart, E.N.
	Lightfoot, Transport Phenomena, John Wiley & Sons, 3) F.P. Incropera,
	D.P. DeWitt, Fundamentals of Heat and Mass Transfer, John Wiley &
	Sons, 4) S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Taylor
	and Francis, 5) J.H. Ferziger and M. Peric, Computational Methods for
Types of Teaching	Fluid Dynamics, Springer. S1 (SS): Lectures (3 SWS)
Types of Teaching:	Recommendations:
Pre-requisites:	
Eroguanava	Basic knowledge of thermodynamics, fluid mechanics, heat transfer
Frequency:	yearly in the summer semester
•	For the award of credit points it is necessary to pass the module exam.
Points:	The module exam contains:
	MP*: 30 min.
	AP*: assignments
	Via mandrilan wan didan manya khan ana arrang dida arrang kasa ta k
	* In modules requiring more than one exam, this exam has to be passed
	or completed with at least "ausreichend" (4,0), respectively.
	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
	der Modulprüfung. Die Modulprüfung umfasst:
	MP*: 30 min.
	AP*: Belegaufgaben

	* Bei Modulen mit mehreren Prüfungsleistungen muss diese Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0) bewertet sein.
Credit Points:	4
Grade:	The Grade is generated from the examination result(s) with the following weights (w): MP*: 30 min. [w: 7] AP*: assignments [w: 3]
	* In modules requiring more than one exam, this exam has to be passed
	or completed with at least "ausreichend" (4,0), respectively.
Workload:	The workload is 120h. The total time budget for this module is 120 hours – 45 hours in class and 75 hours on self-study, including preparation for examination.

Daten:	ENSPEI. MA. Nr. / Prü- Stand: 07.08.2019 📜 Start: SoSe 2020
	fungs-Nr.: 42510
Modulname:	Vernetzte Energiespeicher
(englisch):	Integrated Energy Storage
Verantwortlich(e):	<u>Kertzscher, Jana / Prof. DrIng.</u>
Dozent(en):	Bartholomäus, Ralf / Prof. Dr.
Institut(e):	Institut für Elektrotechnik
Dauer:	1 Semester
Qualifikationsziele /	Die Studierenden besitzen einen Überblick über
Kompetenzen:	
	Methoden zur Modellierung elektrischer Energiespeicher
	Steuerungsverfahren für Energiespeicher in elektrischen Netzen
Inhalte:	und können diese auf typische Problemstellungen anwenden. • Grundlagen elektrochemischer und elektrostatischer
innaite:	
	Energiespeicher (Speicherprinzipien, Kenngrößen, Alterungsmechanismen)
	Aufbau von Speichersystemen (Topologien, Balancing,
	Steuerungs- und Sicherheitskonzepte)
	Modellstrukturen (Diffusionsgleichung, fraktionale Systeme,
	elektrochemische Modelle und abgeleitete elektrische
	Ersatzschaltbilder)
	Modellparametrierung (Versuchsplanung, Parameterschätzung)
	unter Nebenbedingungen, Modelle mit Unbestimmtheiten)
	stochastische und Worst Case basierte Methoden zur
	Ladezustands- und Alterungsschätzung (Kalman-Filter,
	Intervallbeobachter) sowie zur Fehler- und Ausfalldetektion (PCA,
	Klassifikationsmethoden)
	Steuerung vernetzter Energiespeicher (Störgrößenmodellierung,
	prädiktive Leistungssteuerung, dezentrale Regelung)
	Anwendungsbeispiele: Erhöhung der Netzstabilität in lokalen
	Netzen, Einsatz in Systemen zur autarken Energieversorgung,
	hybride elektrische Antriebssysteme
Typische Fachliteratur:	Korthauer: Handbuch Lithium-Ionen Batterien
	Isermann: Identifikation dynamischer Systeme
	Kouvaritakis, Cannon: Model Predictive Control
	Ausgewählte Fachaufsätze aus dem Journal of Power Sources
Lehrformen:	S1 (SS): Vorlesung (2 SWS)
	S1 (SS): Übung (1 SWS)
Voraussetzungen für	
die Teilnahme:	
Turnus:	jährlich im Sommersemester
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:
Leistungspunkten:	KA [120 min]
Leistungspunkte:	4
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)
	Prüfungsleistung(en):
A ula a la a construir d	KA [w: 1]
Arbeitsaufwand:	Der Zeitaufwand beträgt 120h und setzt sich zusammen aus 45h Präsenzzeit und 75h Selbststudium.

Daten:	DEUMWR. MA. Nr. 3345 Stand: 15.07.2016 🖫 Start: SoSe 2017
	/ Prüfungs-Nr.: 61518
Modulname:	Vertiefung Deutsches und Europäisches Umweltrecht
(englisch):	Advanced Study of National and European Environmental Law
Verantwortlich(e):	<u>laeckel, Liv / Prof.</u>
Dozent(en):	Albrecht, Maria
Institut(e):	Professur für Öffentliches Recht
Dauer:	1 Semester
Qualifikationsziele /	Den Studenten werden die Grundlagen des besonderen Umweltrechtes
Kompetenzen:	unter Einbeziehung einfacher Fälle erläutert. Sie werden in die Lage
	versetzt, Zusammenhänge zu verstehen und anhand von Fällen
	nachzuvollziehen.
Inhalte:	Inhalt der Vorlesung sind ausgewählte Bereiche des besonderen
	Umweltrechts. Dabei soll auch flexibel auf aktuelle Probleme des
	besonderen Umweltrechts wie z.B. im Klimaschutz-und Energierecht
	bzw. umweltrechtliche Aspekte moderner Technologien eingegangen
	werden.
Typische Fachliteratur:	Kluth/Smeddink, Umweltrecht, Springer Verlag
	Koch, Umweltrecht, Vahlen Verlag
Lehrformen:	S1 (SS): Vorlesung (2 SWS)
Voraussetzungen für	Empfohlen:
die Teilnahme:	Öffentliches Recht, 2016-07-14
	Einführung in das Deutsche und Europäische Umweltrecht, 2016-07-15
Turnus:	jährlich im Sommersemester
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:
Leistungspunkten:	KA [90 min]
Leistungspunkte:	3
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)
	Prüfungsleistung(en):
	KA [w: 1]
Arbeitsaufwand:	Der Zeitaufwand beträgt 90h und setzt sich zusammen aus 30h
	Präsenzzeit und 60h Selbststudium. Letzteres umfasst die Vor- und
	Nachbereitung der Lehrveranstaltungen sowie die Vorbereitung auf die
	Prüfung.

Daten:	WAEPKAE. MA. Nr. 3067 Stand: 04.06.2020 🥦 Start: SoSe 2021
	/ Prüfungs-Nr.: 41211
Modulname:	Wärmepumpen und Kälteanlagen
(englisch):	Refrigeration and Heat Pumps
Verantwortlich(e):	Fieback, Tobias / Prof. Dr. Ing.
Dozent(en):	Fieback, Tobias / Prof. Dr. Ing.
Institut(e):	Institut für Wärmetechnik und Thermodynamik
Dauer:	1 Semester
Qualifikationsziele /	Die Studierenden sollen in der Lage sein für eine gegebene
Kompetenzen:	Problemstellung ein geeignetes Verfahren zur Erzeugung tiefer
•	Temperaturen auszuwählen, den Kälte- bzw. Wärmepumpenprozess zu
	konzipieren, die erforderlichen Komponenten zu berechnen und die
	Grundlagen für die konstruktive Gestaltung bereitzustellen.
Inhalte:	Es werden die grundlegenden Verfahren zur Erzeugung tiefer
	Temperaturen einschließlich ihrer prinzipiellen Umsetzung entwickelt.
	Dabei wird ausführlich sowohl auf Kaltdampf-Kompressionsmaschinen,
	Dampfstrahlmaschinen, Sorptionsmaschinen, Kaltluftmaschinen sowie
	elektrothermische Verfahren eingegangen. Dies beinhaltet die
	physikalischen Grundlagen ebenso, wie die Eigenschaften der
	verwendeten Arbeitsstoffe sowie die Berechnung und Gestaltung
	einzelner Komponenten wie Verdichter, Expansionsventile, Verdampfer,
	Verflüssiger, Absorber, Austreiber.
Typische Fachliteratur:	VDI-Wärmeatlas, Springer-Verlag
	H. L. von Cube, F. Steimle, H. Lotz, J. Kunis: Lehrbuch der Kältetechnik,
	C. F. Müller Verlag, Karlsruhe
	H. Jungnickel: Grundlagen der Kältetechnik, Verlag Technik, Berlin
Lehrformen:	S1 (SS): Vorlesung (2 SWS)
	S1 (SS): Übung (1 SWS)
Voraussetzungen für	Empfohlen:
die Teilnahme:	Technische Thermodynamik II, 2016-07-04
	Technische Thermodynamik I, 2020-03-04
Turnus:	jährlich im Sommersemester
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:
Leistungspunkten:	MP/KA (KA bei 16 und mehr Teilnehmern) [MP mindestens 30 min / KA
	90 min]
Leistungspunkte:	4
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)
	Prüfungsleistung(en):
	MP/KA [w: 1]
Arbeitsaufwand:	Der Zeitaufwand beträgt 120h und setzt sich zusammen aus 45h
	Präsenzzeit und 75h Selbststudium. Letzteres umfasst die Vor- und
	Nachbereitung der Lehrveranstaltung und die Prüfungsvorbereitung.

Daten:	H2BRENN. BA. Nr. 620 / Stand: 06.11.2015 🔼 Start: SoSe 2011
	Prüfungs-Nr.: 41306
Modulname:	Wasserstoff- und Brennstoffzellentechnologien
(englisch):	Hydrogen and Fuel Cell Technologies
Verantwortlich(e):	Krause, Hartmut / Prof. DrIng.
Dozent(en):	Krause, Hartmut / Prof. DrIng.
Institut(e):	Institut für Wärmetechnik und Thermodynamik
Dauer:	1 Semester
Qualifikationsziele /	Die Studierenden kennen die ablaufenden Prozesse sowie die
Kompetenzen:	Funktionsweise von Brennstoffzellensystemen, technischen Systemen
	zur Wasserstofferzeugung und zur dezentralen KWK auf der Basis von
	Brennstoffzellen-Technologien und können diese erklären und
	vergleichen.
Inhalte:	Einführung in die Wasserstofftechnologie
	Grundlagen der Brennstoffzellen
	Brennstoffzellen-Typen und Funktionsweise
	Erzeugung von Wasserstoff durch Reformierung von
	Kohlenwasserstoffen
	Wasserstofferzeugung aus anderen Energieträgern
	Wasserstoffspeicherung
	KWK-Systeme auf der Basis von Brennstoffzellen
	Einordnung, Betriebsweise, Anwendungsbeispiele
Typische Fachliteratur:	Vielstich, W., Lamm, A., Gasteiger, H. (Eds): Handbook of Fuel Cells:
	Fundamentals, Technology, Applications Willey, 2003.
Lehrformen:	S1 (SS): Vorlesung (2 SWS)
	S1 (SS): Übung (1 SWS)
Voraussetzungen für	Empfohlen:
die Teilnahme:	Dezentrale Kraft-Wärme-Kopplung, 2011-03-01
	Bachelor Maschinenbau, Verfahrenstechnik, Umwelt-Engineering oder
	vergleichbarer Studiengang.
Turnus:	jährlich im Sommersemester
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:
Leistungspunkten:	MP/KA (KA bei 11 und mehr Teilnehmern) [MP mindestens 30 min / KA
	90 min]
	PVL: Belege zu allen Übungsaufgaben
	PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden.
Leistungspunkte:	4
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r)
	Prüfungsleistung(en):
	MP/KA [w: 1]
Arbeitsaufwand:	Der Zeitaufwand beträgt 120h und setzt sich zusammen aus 45h
	Präsenzzeit und 75h Selbststudium. Letzteres umfasst die Vor- und
	Nachbereitung der Lehrveranstaltungen, die Anfertigung der Belege zu
	ausgewählten Übungsaufgaben sowie die Prüfungsvorbereitung.

Freiberg, den 14. September 2021

gez. Prof. Dr. Klaus-Dieter Barbknecht

Rektor

Herausgeber: Der Rektor der TU Bergakademie Freiberg

Redaktion: Prorektor für Bildung

TU Bergakademie Freiberg 09596 Freiberg Anschrift:

Medienzentrum der TU Bergakademie Freiberg Druck: